目录:

1. 数组每一行除以这一行的总数(numpy divide row by row sum)

2. 数组每一行或者每一列求平均 (python average array columns or rows)

3. 数组每一行或者每一列求加权平均 (python weight average array columns or rows)

4. 计算数组得到每一行或者每一列的和 (python sum columns of an array)

5. 生成指定维度的随机矩阵 (python generate random array)

6. 数组中对元素进行布尔类型判断 (python check elements in array with Boolean type)

7. 数组中是否存在满足条件的数 (python check if exsit element in array satisfies a condition)

8. 数组中所有元素是否有0元素 (python check whether all elements in numpy is zero)

内容:

1. 数组每一行除以这一行的总数(numpy divide row by row sum)

https://stackoverflow.com/questions/16202348/numpy-divide-row-by-row-sum

方法1:

>>> e
array([[ 0., 1.],
[ 2., 4.],
[ 1., 5.]])
>>> e/e.sum(axis=1)[:,None]
array([[ 0. , 1. ],
[ 0.33333333, 0.66666667],
[ 0.16666667, 0.83333333]])

方法2:

>>> (e.T/e.sum(axis=1)).T
array([[ 0. , 1. ],
[ 0.33333333, 0.66666667],
[ 0.16666667, 0.83333333]])

方法3:

>>> e/e.sum(axis=1, keepdims=True)
array([[ 0. , 1. ],
[ 0.33333333, 0.66666667],
[ 0.16666667, 0.83333333]])

2. 数组每一行或者每一列求平均 (python average array columns or rows)

import numpy as np
In [50]: a=np.arange(1,13).reshape(3,4)
In [51]: a
Out[51]:
array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12]])
In [52]: np.average(a, axis=1)
Out[52]: array([ 2.5, 6.5, 10.5])
In [53]: np.average(a, axis=0)
Out[53]: array([5., 6., 7., 8.])

3. 数组每一行或者每一列求加权平均 (python weight average array columns or rows)

https://docs.scipy.org/doc/numpy/reference/generated/numpy.average.html

>>> data = np.arange(6).reshape((3,2))
>>> data
array([[0, 1],
[2, 3],
[4, 5]])
>>> np.average(data, axis=1, weights=[1./4, 3./4])
array([0.75, 2.75, 4.75])

  

4. 计算数组得到每一行或者每一列的和 (python sum columns of an array)

https://stackoverflow.com/questions/13567345/how-to-calculate-the-sum-of-all-columns-of-a-2d-numpy-array-efficiently

>>> import numpy as np
>>> a = np.arange(12).reshape(4,3)
>>> a.sum(axis=0)
array([18, 22, 26])
>>> a.sum(axis=1)
array([ 3, 12, 21, 30])

5. 生成指定维度的随机矩阵 (python generate random array)

https://www.codespeedy.com/how-to-create-matrix-of-random-numbers-in-python-numpy/

(1)生成指定维度的小数数组

In [1]: import numpy as np

In [2]: a=np.random.rand(3,4)

In [3]: a
Out[3]:
array([[0.03403289, 0.31416715, 0.42700029, 0.49101901],
[0.70750959, 0.4852401 , 0.11448147, 0.21570702],
[0.87512839, 0.82521751, 0.56915875, 0.67623931]])

(2)生成只能维度的整数数组

In [8]: np.random.randint(1,10,size=(3,4))
Out[8]:
array([[8, 1, 4, 3],
[7, 1, 8, 7],
[2, 5, 4, 3]])

6. 数组中对元素进行布尔类型判断 (python check elements in array with Boolean type)

https://docs.scipy.org/doc/numpy/reference/generated/numpy.all.html

https://docs.scipy.org/doc/numpy/reference/generated/numpy.any.html

>>> np.all([-1, 4, 5])
True >>> np.all([[True,False],[True,True]])
False >>> np.all([[True,False],[True,True]], axis=0)
array([ True, False]) // 如果要判断至少存在一个元素则使用 >>> np.any([-1, 0, 5])
True >>> np.any([[True, False], [True, True]])
True >>> np.any([[True, False], [False, False]], axis=0)
array([ True, False])

7. 数组中是否存在满足条件的数 (python check if exsit element in array satisfies a condition)

In [1]: import numpy as np

In [2]: a=np.arange(1, 13).reshape(3, 4)

In [3]: a
Out[3]:
array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12]]) In [4]: a>7
Out[4]:
array([[False, False, False, False],
[False, False, False, True],
[ True, True, True, True]]) In [5]: np.any(a>7)
Out[5]: True In [6]: np.all(a>7)
Out[6]: False

8. 数组中所有元素是否有0元素 (python check whether all elements in numpy is zero)

https://stackoverflow.com/questions/18395725/test-if-numpy-array-contains-only-zeros

In [1]: import numpy as np

In [2]: not np.any(np.array([0, 0, 2]))
Out[2]: False In [3]: not np.any(np.array([0, 0, 0]))
Out[3]: True

// 计算非零个数再进行判断
In [4]: np.count_nonzero(np.array([0, 0, 2]))
Out[4]: 1 In [5]: np.count_nonzero(np.array([0, 0, 0]))
Out[5]: 0

// 用集合去掉重复元素再判断
In [6]: set(np.array([0, 0, 2]))
Out[6]: {0, 2} In [7]: set(np.array([0, 0, 0]))
Out[7]: {0}

9.

python 常用技巧 — 数组 (array)的更多相关文章

  1. python 常用技巧

    一.字符串与数值的转换 Python中字符串转换为数值: str_num = '99' num = int(str_num) 整型数转换为字符串: num = 99 str_num = str(num ...

  2. python常用技巧 — 杂

    目录: 1. 找到字符串中的所有数字(python find digits in string) 2. python 生成连续的浮点数(如 0.1, 0.2, 0.3, 0.4, ... , 0.9) ...

  3. python 常用技巧 — 列表(list)

    目录: 1. 嵌套列表对应位置元素相加 (add the corresponding elements of nested list) 2. 多个列表对应位置相加(add the correspond ...

  4. python常用技巧

    1,关于tab键与4个空格: 由于不同平台间,tab键值设置有所区别,据相关介绍,官方在缩进方面推荐使用4个空格.方便起见,可设置tab自动转换为4个空格. 1.1在pycharm中:    通过fi ...

  5. python 常用技巧 — 字典 (dictionary)

    目录: 1. python 相加字典所有的键值 (python sum all values in dictionary) 2. python 两个列表分别组成字典的键和值 (python two l ...

  6. Python NumPy中数组array.min(0)返回数组

    如果没有参数min()返回一个标量,如果有参数0表示沿着列,1表示沿着行.

  7. #1 Python灵活技巧

    前言 Python基础系列博文已顺利结束,从这一篇开始将进入探索更加高级的Python用法,Python进阶系列文章将包含面向对象.网络编程.GUI编程.线程和进程.连接数据库等.不过在进阶之前,先来 ...

  8. python算法常用技巧与内置库

    python算法常用技巧与内置库 近些年随着python的越来越火,python也渐渐成为了很多程序员的喜爱.许多程序员已经开始使用python作为第一语言来刷题. 最近我在用python刷题的时候想 ...

  9. php常用数组array函数实例总结【赋值,拆分,合并,计算,添加,删除,查询,判断,排序】

    本文实例总结了php常用数组array函数.分享给大家供大家参考,具体如下: array_combine 功能:用一个数组的值作为新数组的键名,另一个数组的值作为新数组的值 案例: <?php ...

随机推荐

  1. 人生苦短_我用Python_def(函数)_004

    # coding=utf-8 # function函数:内置函数 # 例如: len int extent list range str # print insert append pop rever ...

  2. Python入门图

  3. 2,Spring MVC 学习总结(二)- 方法(Action)参数映射

    一,Controller层方法(Action)参数映射 1,自动参数映射 1.1,基本数据类型参数映射 方法的参数可以是任意基本数据类型,如果方法参数名与http中请求的参数名称相同时会进行自动映射. ...

  4. Java Web学习总结(11)JDBC

    一,简介 JDBC(Java DataBase Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用Java语言编写的 ...

  5. JS中正则表达式

    正则表达式用于对字符串模式匹配及检索替换,是对字符串执行模式匹配的强大工具.简单来说正则表达式就是处理字符串的,我们可以用它来处理一些复杂的字符串. 1.创建方式 pattern(模式):描述了表达式 ...

  6. 【HDU6662】Acesrc and Travel【树形DP】

    题目大意:给你一棵树,每个节点有一个权值,Alice和Bob进行博弈,起点由Alice确定,确定后交替选择下一个点,Alice目标是最终值尽可能大,Bob目标是尽可能小 题解:很明显是树形DP,那么考 ...

  7. c#蜘蛛

    C#写一个采集器 using System; using System.Collections.Generic; using System.Text; using System.Net; using ...

  8. BZOJ 4710: [Jsoi2011]分特产(容斥)

    传送门 解题思路 首先所有物品是一定要用完的,那么可以按照物品考虑,就是把每种物品分给\(n\)个人,每个人分得非负整数,可以用隔板法计算.设物品有\(m\)个,方案数为\(C(n+m-1,n-1)\ ...

  9. BZOJ 4399: 魔法少女LJJ(线段树)

    传送门 解题思路 出题人真会玩..操作\(2\)线段树合并,然后每棵线段树维护元素个数和.对于\(6\)这个询问,因为乘积太大,所以要用对数.时间复杂度\(O(nlogn)\) 代码 #include ...

  10. 全面了解python中的类,对象,方法,属性

    全面了解python中的类,对象,方法,属性 python中一切皆为对象,所谓对象:我自己就是一个对象,我玩的电脑就是对象,坐着的椅子就是对象,家里养的小狗也是一个对象...... 我们通过描述属性( ...