题目链接:Coins

Description

Alice and Bob are playing a simple game. They line up a row of nn identical coins, all with the heads facing down onto the table and the tails upward.

For exactly mm times they select any kk of the coins and toss them into the air, replacing each of them either heads-up or heads-down with the same possibility. Their purpose is to gain as many coins heads-up as they can.

Input

The input has several test cases and the first line contains the integer \(t (1 \le t \le 1000)\) which is the total number of cases.

For each case, a line contains three space-separated integers \(n\), \(m (1 \le n, m \le 100)\) and \(k (1 \le k \le n)\).

Output

For each test case, output the expected number of coins heads-up which you could have at the end under the optimal strategy, as a real number with the precision of \(3\) digits.

Sample input

6
2 1 1
2 3 1
5 4 3
6 2 3
6 100 1
6 100 2

Sample output

0.500
1.250
3.479
3.000
5.500
5.000

Solution

题意

桌上放置着 \(n\) 个反面朝上的硬币,有 \(m\) 此操作,每次选择任意 \(k\) 个硬币抛向空中,每个硬币落到桌子后正面朝上和反面朝上的概率相同,求最终正面朝上的硬币的期望。

题解

概率DP 期望

期望 = 概率 * 总数

\(f(i, j)\) 表示为抛 \(i\) 枚硬币 \(j\) 枚硬币朝上的概率。则有 \(f(i, j)= 0.5 * f(i - 1, j) + 0.5 * f(i - 1, j - 1)\),其中 \(f(i, 0) = 2 ^ i\)。

\(DP(i, j)\) 表示第 \(i\) 次操作后有 \(j\) 枚正面朝上的硬币的概率,则反面硬币的个数为 \(n - j\)。

如果 \(n - j >= k\),那么只要在反面朝上的硬币中选择 \(k\) 枚抛即可。抛完 \(k\) 枚硬币后有 \(0 \sim k\) 枚硬币可能会正面朝上,递推方程为 \(DP(i + 1, j + l) = \sum_{l = 0}^{k} DP(i, j) * f(k, l)\)。

如果 \(n - j < k\),那么除了要抛 \(n - j\) 枚反面朝上的硬币,还要选择 \(k - (n - j)\) 枚正面朝上的硬币,这样最后正面朝上的个数是本来正面就朝上的 \(j-(k-(n-j))\) 枚加上抛了之后朝上的 \(l\ (0\le l\le k)\) 枚,递推方程为 \(DP(i + 1, j - (k - (n - j)) + l) = \sum_{l = 0}^{k} DP(i, j) * f(k, l)\)。

Code

#include <bits/stdc++.h>

using namespace std;
const int maxn = 110;
double dp[maxn][maxn];
double f[maxn][maxn];
int n, k, m; void init() {
f[0][0] = 1;
for (int i = 1; i <= 100; ++i) {
f[i][0] = pow(0.5, i);
for (int j = 1; j <= 100; ++j) {
f[i][j] = (f[i - 1][j] + f[i - 1][j - 1]) / 2.0;
}
}
} int main() {
init();
int T;
scanf("%d", &T);
while (T--) {
scanf("%d%d%d", &n, &m, &k);
memset(dp, 0, sizeof(dp));
dp[0][0] = 1;
for (int i = 0; i < m; ++i) {
for (int j = 0; j <= n; ++j) {
for (int l = 0; l <= k; ++l) {
if (n - j >= k) {
dp[i + 1][j + l] += dp[i][j] * f[k][l];
} else {
dp[i + 1][j + l - (k - (n - j))] += dp[i][j] * f[k][l];
}
}
}
}
double ans = 0;
for (int i = 1; i <= n; ++i) {
ans += 1.0 * i * dp[m][i];
}
printf("%.3f\n", ans);
}
return 0;
}

2017 ICPC Asia Urumqi A.coins (概率DP + 期望)的更多相关文章

  1. luogu P6835 概率DP 期望

    luogu P6835 概率DP 期望 洛谷 P6835 原题链接 题意 n + 1个节点,第i个节点都有指向i + 1的一条单向路,现在给他们添加m条边,每条边都从一个节点指向小于等于自己的一个节点 ...

  2. 2017 ICPC乌鲁木齐 A Coins 概率dp

    Coins 题意:一开始所有n个硬币都是反面朝上的,每次必须拿k个来抛,抛的人足够聪明,问m次之后向上的硬币的期望. 首先说了这个足够聪明的意思,就是只要向反面的有k个就不会sb地去拿向正面的来抛,想 ...

  3. ACM-ICPC 2017 Asia Urumqi A. Coins

    Alice and Bob are playing a simple game. They line up a row of n identical coins, all with the heads ...

  4. atcoderI - Coins ( 概率DP)

    I - Coins Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Statement Let NN b ...

  5. HDU5985 Lucky Coins 概率dp

    题意:给你N种硬币,每种硬币有Si个,有Pi 概率朝上,每次抛所有硬币抛起,所有反面的拿掉,问每种硬币成为最后的lucky硬币的概率. 题解:都知道是概率dp,但是模拟赛时思路非常模糊,很纠结,dp[ ...

  6. Gym 101606F - Flipping Coins - [概率DP]

    题目链接:https://codeforc.es/gym/101606/problem/F 题解: 假设 $f[i][j]$ 表示抛 $i$ 次硬币,有 $j$ 个硬币正面朝上的概率. 所以只有两种挑 ...

  7. 概率dp+期望dp 题目列表(一)

    表示对概率和期望还不是很清楚定义. 目前暂时只知道概率正推,期望逆推,然后概率*某个数值=期望. 为什么期望是逆推的,例如你求到某一个点的概率我们可以求得,然后我们只要运用dp从1~n每次都加下去就好 ...

  8. ACM-ICPC 2017 Asia Urumqi A. Coins【期望dp】

    题目链接:https://www.jisuanke.com/contest/2870?view=challenges 题目大意:给出n个都正面朝下的硬币,操作m次,每次都选取k枚硬币抛到空中,求操作m ...

  9. HDU.5985.Lucky Coins(概率DP)

    题目链接 \(Description\) 有n(n<=10)种硬币,已知每种硬币的数量和它抛一次正面朝上的概率pi.进行如下过程:每次抛一次所有硬币,将正面朝下的硬币去掉.重复该过程直到只剩一种 ...

随机推荐

  1. ASP.NET Core学习——6

    依赖注入DI ASP.NET Core的底层设计支持和使用依赖注入.ASP.NET Core应用程序可以利用内置的框架服务将它们注入到启动类的方法中,并且应用程序服务能够配置注入. 1.什么是依赖注入 ...

  2. PHP-文件和目录操作

    目录操作 创建目录:mkdir(目录地址, 权限, 是否递归创建 = false); 删除目录:rmdir(目录地址);(仅仅可以删除空目录,不支持递归删除) 移动(改名):rename(旧地址, 新 ...

  3. intellij免费激活码

    IDEA官方下载地址:https://www.jetbrains.com/idea/nextversion/ IntelliJ IDEA 2019.2最新版本免费激活码 支持IDEA所有版本 正版授权 ...

  4. mysql 安装运行学习过程中的报错问题

    错误记录(windows端): 问题1:在启动MYSQL时出现问题:“ERROR 2003 (HY000): Can't connect to MySQL server on 'localhost' ...

  5. 【react】---redux-actions的基本使用---【巷子】

    一.安装 cnpm install --save redux-actions 二.为什么使用 redux-actions reducer使用switch case语句进行action类型判断,当act ...

  6. PAT甲级——A1149DangerousGoodsPackaging【25】

    When shipping goods with containers, we have to be careful not to pack some incompatible goods into ...

  7. CentOS 7 64位虚拟机安装过程

    第一步:新建一个虚拟机,选择典型安装,点击下一步.

  8. apache虚拟主机配置及解析

    Apache虚拟主机配置及解析 1.修改httpd-vhosts.conf 打开apache(Apache24)/conf/extra/httpd-vhosts.conf文件,添加虚拟主机信息,可以这 ...

  9. java selenium爬取验证图片是否加载完成

    爬虫任务里发现有部分图片没有加载完成就进行文件流上传,导致有一些图片是空白,需要判断一下: 首选获取image标签元素: WebElement image = driver.findElement(B ...

  10. Python运算

    逻辑运算 指数运算 整除 所以,我们来做个运算吧~ 用raw_input()可以从键盘上读取输入,raw_input()中的字符串会在屏幕上面打印出来 用int()转只因为Python默认都是以str ...