FHJ学长的心愿

原题链接,点我进去

题意

给你一个数N,让你求在$$C^{0}{n} \ C{1}_{n} C{2}{n}\ \dots \ C^{n}_{n}$$中有几个组合数是奇数。

解题思路

出题人CX学长给的题解:

本题实际上是考察的Lucas定理。

Lucas定理:(写程序的时候后半部分可以递归求)

设\(P\)为素数,则:

\[C^{m}_{n}(\% P)=C^{m\%P}_{n\%P}∗C^{⌊m/P⌋}_{⌊n/P⌋}(\%P)
\]

一句话概括,就是一个组合数可以拆成\(P\)进制下的乘积,如下:(与上式本质相同)

\[n = n_{k}*p^{k}+n_{k-1}*p^{k-1}+...+n_{1}*p+n_0
\]

\[m = m_{k}*p^{k}+m_{k-1}*p^{k-1}+...+m_{1}*p+m_0
\]

则(上式实际上也就是把\(n,m\)分解成了\(P\)进制的形式):

\[C^{m}_{n}(\% P)=C^{m_{k}}_{n_{k}}∗C^{m_{k-1}}_{n_{k-1}}*...*C^{m_{0}}_{n_{0}}(\%P)
\]

当\(P = 2\)的时候,其实就只有四种情况:\(,,,,,C_1^0, C_0^1, C_0^0, C_1^1\),其中只有\(C_0^1 =0\),其余都是1。

那么对于这个题,我们实际上要找的就是在\(C_n^0...C_n^n\)中有多少个 \(C_n^m\)满足\(C_n^m\%2=1\)。

对于给定的\(n\),我们去考虑\(m\),如果对应\(n\)的二进制位为0,那么\(m\)对应的二进制位只能为0(因为\(C_0^1 =0\)),如果对应\(n\)的二进制位为1,那么\(m\)对应的二进制位可以为1也可以为0。(这样也保证了统计的\(m\leq n\))。

所以答案就是n的二进制中1的位置取0或1的所有可能。即\(2^{cnt}\),\(cnt\)为\(n\)的二进制中1的个数。

这个题有人竟然通过找规律找出来的,真强。

代码实现

#include <bits/stdc++.h>
using namespace std;
int main() {
int n;
while (scanf("%d", &n) != EOF) {
int cnt = 0;
while (n) {
if (n & 1) cnt++;
n >>= 1;
}
printf("%d\n", 1 << cnt);
}
return 0;
}

FHJ学长的心愿 QDUOJ 数论的更多相关文章

  1. lb开金矿 QDUOJ 数论

    lb开金矿 QDUOJ 数论 原题链接,点我进去 题意 大家都知道lb有n个小弟(编号从2到n+1),他们可以按照规则传递信息:某天编号为i的小弟收到信息后,那么第二天他会给编号为j的小弟传达信息,其 ...

  2. XDTIC2019招新笔试题 + 官方解答

    腾讯创新俱乐部2019年招新笔试试题   [1] 小宗学长正在努力学习数论,他写下了一个奇怪的算式: \[ 2019^{2018^{2017^{\dots^{2^1}}}} \] 算式的结果一定很大, ...

  3. BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)

    今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...

  4. 一位学长的ACM总结(感触颇深)

    发信人: fennec (fennec), 信区: Algorithm 标 题: acm 总结 by fennec 发信站: 吉林大学牡丹园站 (Wed Dec 8 16:27:55 2004) AC ...

  5. 洛谷P2312 解方程 [noip2014] 数论

    正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...

  6. 【BZOJ1053】[HAOI2007]反素数 (搜索+数论)

    \([POI2002][HAOI2007]\)反素数 题目描述 对于任何正整数x,其约数的个数记作\(g(x)\).例如\(g(1)=1.g(6)=4\). 如果某个正整数x满足:\(g(x)> ...

  7. 数论day1 —— 基础知识(们)

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=61632537 向大(hei)佬(e)势力学(di ...

  8. HRBUST 1211 火车上的人数【数论解方程/模拟之枚举+递推】

    火车从始发站(称为第1站)开出,在始发站上车的人数为a,然后到达第2站,在第2站有人上.下车,但上.下车的人数相同,因此在第2站开出时(即在到达第3站之前)车上的人数保持为a人.从第3站起(包括第3站 ...

  9. LZH的多重影分身 qduoj 思维 差分

    LZH的多重影分身 qduoj 思维 差分 原题链接:https://qduoj.com/problem/591 题意 在数轴上有\(n\)个点(可以重合)和\(m\)条线段(可以重叠),你可以同时平 ...

随机推荐

  1. springboot扫描自定义的servlet和filter代码详解_java - JAVA

    文章来源:嗨学网 敏而好学论坛www.piaodoo.com 欢迎大家相互学习 这几天使用spring boot编写公司一个应用,在编写了一个filter,用于指定编码的filter,如下: /** ...

  2. 【NOIP2014模拟11.3】蛋糕

    题目 今天是Bessie的生日,他买了一个蛋糕和朋友们一起分享,蛋糕可以看成是一个R行C列的表格,共有R*C个格子,每个格子都有一个0至9的数字,表示该格子蛋糕拥有的巧克力.现在Bessie要把蛋糕横 ...

  3. Python 变量类型Ⅲ

    Python 元组 元组是另一个数据类型,类似于 List(列表). 元组用 () 标识.内部元素用逗号隔开.但是元组不能二次赋值,相当于只读列表. 以上实例输出结果: 以下是元组无效的,因为元组是不 ...

  4. Comet OJ - Contest #12 D

    题目描述 求(x,y)的对数满足x∈[0,a],y∈[0,b],x⊕y=0且|x-y|<=m 题解 一种比较sb的做法是考虑x-y的借位,根据借位以及差值进行转移 还有一种比较正常的做法,假设一 ...

  5. ZOJ 2301 离散化

    题目链接: 题意是说,有从 1 开始递增依次编号的很多球,开始他们都是黑色的,现在依次给出 n 个操作(ai,bi,ci),每个操作都是把编号 ai 到 bi 区间内的所有球涂成 ci 表示的颜色(黑 ...

  6. BZOJ 3143 Luogu P3232 [HNOI2013]游走 (DP、高斯消元)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3143 (luogu) https://www.luogu.org/pro ...

  7. wannafly 练习赛11 E 求最值(平面最近点对)

    链接:https://www.nowcoder.com/acm/contest/59/E 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536K 64bit ...

  8. [CSP-S模拟测试]:Six(数学)

    题目传送门(内部题85) 输入格式 一个正整数$N$. 输出格式 一个数表示答案对$1000000007$取模后的结果 样例 样例输入1: 样例输出1: 样例输入2: 样例输出2: 样例输入3: 样例 ...

  9. flask中request对象获取参数的方法

    从当前request获取内容: method: 起始行,元数据 host: 起始行,元数据 path: 起始行,元数据 environ: 其中的 SERVER_PROTOCOL 是起始行,元数据 he ...

  10. ES6数组内对象去重

    这个数组去重转自https://www.cnblogs.com/caideyipi/p/7679681.html, 就当笔记记录: 去重Set const arr = ['张三','张三','三张三' ...