题目链接

题意:一个马在无限大的棋盘中跳,问跳n步能跳到多少个不同的格子。

首先写个打表程序打一下n比较小的时候的表:

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=+,mod=;
const int dx[]= {-,-,,,,,-,-};
const int dy[]= {-,-,-,-,,,,};
typedef pair<int,int> P;
set<P> st[];
int n=,a[N];
int main() {
st[].insert({,});
for(int i=; i<n; ++i) {
for(P p:st[i&]) {
st[i&^].insert(p);
for(int j=; j<; ++j)st[i&^].insert({p.first+dx[j],p.second+dy[j]});
}
a[i]=st[i&].size();
}
for(int i=; i<n; ++i)printf("%d ",a[i]);
return ;
}

打印结果:

                   

把元素差分两次后,成了这个亚子:

                   

发现了什么?当n比较大的时候,经过二次差分后的数组的每一项都是28!因此可以猜测答案是一个关于n的二次多项式,现在要做的是把这个多项式推出来。

手算当然可以,但有没有一个可以不用动脑子就算出来的代码吗?答案是肯定的。拉格朗日插值大法好!

核心代码:(只需要写三个函数,前两个函数的作用是封装多项式的加法和乘法,第三个函数的作用是插值)

 typedef double db;
typedef vector<db> Poly;
Poly operator*(Poly a,Poly b) {
Poly c;
c.resize(a.size()+b.size()-);
for(int i=; i<a.size(); ++i)
for(int j=; j<b.size(); ++j)c[i+j]+=a[i]*b[j];
return c;
}
Poly operator+(Poly a,Poly b) {
Poly c;
c.resize(max(a.size(),b.size()));
for(int i=; i<c.size(); ++i) {
if(i<a.size())c[i]+=a[i];
if(i<b.size())c[i]+=b[i];
}
return c;
}
Poly Lagrange(Poly X,Poly Y) {
Poly c;
int n=X.size();
for(int i=; i<n; ++i) {
Poly x({});
for(int j=; j<n; ++j)if(j!=i) {
x=x*Poly({-X[j],});
x=x*Poly({1.0/(X[i]-X[j])});
}
c=c+x*Poly({Y[i]});
}
return c;
}

这样一来,只要输入X向量和Y向量,就能直接求出原多项式了,非常方便。比如输入如下两个向量:

     Poly a({,,}),b({,,});
Poly c=Lagrange(a,b);
for(db x:c)printf("%f ",x);

输出的结果为

1.000000 -1.000000 1.000000

也就是说,三个点$(1,2),(2,3),(3,7)$所确定的多项式为$f(x)=x^2-x+1$

现在我们在打印的结果中任取三个点比如$(10,1345),(11,1633),(12,1949)$,得到的结果为:

5.000000 -6.000000 14.000000

即答案关于n的多项式为$f(n)=14n^2-6n+5$。当n比较大时的答案就可以通过这个式子算出来了,n比较小的时候直接输出结果即可。最终提交上去的代码应该是这个亚子:

 #include<bits/stdc++.h>
using namespace std;
typedef unsigned long long ll;
const int N=+,inf=0x3f3f3f3f;
const int a[]= {,,,,,,,,,,};
int ka,n;
int main() {
int T;
for(scanf("%d",&T); T--;) {
printf("Case #%d: ",++ka);
scanf("%d",&n);
if(n<=)printf("%d\n",a[n]);
else printf("%llu\n",-(ll)*n+(ll)*n*n);
}
return ;
}

注意要用unsigned long long,OK了~

ps:如果对精度要求高的话,也可以用分数版的:

 struct Frac {
int x,y;
Frac(int _x=,int _y=):x(_x),y(_y) {
int g=__gcd(x,y);
x/=g,y/=g;
if(y<)x=-x,y=-y;
}
Frac operator-() {return Frac(-x,y);}
Frac operator+(Frac b) {return Frac(x*b.y+y*b.x,y*b.y);}
Frac operator+=(Frac b) {return *this=(*this)+b;}
Frac operator-(Frac b) {return Frac(x*b.y-y*b.x,y*b.y);}
Frac operator-=(Frac b) {return *this=(*this)-b;}
Frac operator*(Frac b) {return Frac(x*b.x,y*b.y);}
Frac operator*=(Frac b) {return *this=(*this)*b;}
Frac operator/(Frac b) {return Frac(x*b.y,y*b.x);}
Frac operator/=(Frac b) {return *this=(*this)/b;}
};
typedef Frac db;
typedef vector<db> Poly;
Poly operator*(Poly a,Poly b) {
Poly c;
c.resize(a.size()+b.size()-);
for(int i=; i<a.size(); ++i)
for(int j=; j<b.size(); ++j)c[i+j]+=a[i]*b[j];
return c;
}
Poly operator+(Poly a,Poly b) {
Poly c;
c.resize(max(a.size(),b.size()));
for(int i=; i<c.size(); ++i) {
if(i<a.size())c[i]+=a[i];
if(i<b.size())c[i]+=b[i];
}
return c;
}
Poly Lagrange(Poly X,Poly Y) {
Poly c;
int n=X.size();
for(int i=; i<n; ++i) {
Poly x({Frac()});
for(int j=; j<n; ++j)if(j!=i) {
x=x*Poly({-X[j],Frac()});
x=x*Poly({Frac()/(X[i]-X[j])});
}
c=c+x*Poly({Y[i]});
}
return c;
}

HDU - 6253 Knightmare (打表+拉格朗日插值)的更多相关文章

  1. hdu 6253 (bfs打表)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=6253 题意: 马可以往一个方向走两步,然后转个弯走一步,这样算一次动作,求问马n次动作后,能到达多少个点, ...

  2. 【BZOJ2655】calc DP 数学 拉格朗日插值

    题目大意 ​ 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: ​ 长度为给定的\(n\). ​ \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. ​ \(a_1, ...

  3. BZOJ.2655.calc(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...

  4. BZOJ.3453.tyvj 1858 XLkxc(拉格朗日插值)

    BZOJ 题意即求\[\sum_{i=0}^n\sum_{j=1}^{a+id}\sum_{x=1}^jx^k\] 我们知道最后一个\(\sum\)是自然数幂和,设\(f(n)=\sum_{x=1}^ ...

  5. fold算法(拉格朗日插值)

    如果打表发现某个数列: 差分有限次之后全为0 例如: 2017新疆乌鲁木齐ICPC现场赛D题 ,,,,,,,,,,…… [2018江苏南京ICPC现场赛也有这样的题目] 那么可以使用以下黑科技计算出第 ...

  6. 【BZOJ】2655: calc 动态规划+拉格朗日插值

    [题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...

  7. jzoj5683. 【GDSOI2018模拟4.22】Prime (Min_25筛+拉格朗日插值+主席树)

    题面 \(n\leq 10^{12},k\leq 100\) 题解 一眼就是一个\(Min\_25\)筛+拉格朗日插值优化,然而打完之后交上去发现只有\(60\)分 神\(tm\)还要用主席树优化-- ...

  8. BZOJ 2655: calc(拉格朗日插值)

    传送门 解题思路 首先比较容易能想到\(dp\),设\(f[i][j]\)表示前\(j\)个数,每个数\(<=i\)的答案,那么有转移方程:\(f[i][j]=f[i-1][j-1]*i*j+f ...

  9. Educational Codeforces Round 7 F - The Sum of the k-th Powers 拉格朗日插值

    The Sum of the k-th Powers There are well-known formulas: , , . Also mathematicians found similar fo ...

随机推荐

  1. svn修改代码URL整合路径

    我们平常开发的代码都是在A服务器上整合的,最近A服务器突然无法访问了,所以今天我们更换了一下服务器.svn如何安装的就不说了,这里只介绍一下如何更换SVN URL的. 在你拿到URL后,在工作文件夹下 ...

  2. SpringBoot配置文件值植入

    <!‐‐导入配置文件处理器,配置文件进行绑定就会有提示‐‐> <dependency> <groupId>org.springframework.boot</ ...

  3. mysql --single-transaction 在从库导入完数据以后要在配置文件/etc/my.cnf 中加上read_only=1的参数

    1.在做数据库的主从时,防止在这个过程中,有数据访问进来,要: 要想连super权限用户的写操作也禁止,就使用"flush tables with read lock;",这样设置 ...

  4. python copy与deepcopy (拷贝与深拷贝)

    copy与deepcopy python 中的copy与deepcopy是内存数据的操作,但是两个函数有一定的区别. 1.copy import copy list = [1, [4, 5, 6], ...

  5. mysql 速度优化

    1.添加索引 ALTER TABLE `cw_base_house` ADD INDEX idx_house ( `villageCode`, `buildingNo`, `unitNo`, `hou ...

  6. 建立EF访问数据库架构时,出现One or more validation errors were detected during model generation

    原因是因为我在写实体类的时候没有为实体类中的属性声明一个主键,即用[key]特性标注在属性上,这样DbContext才能为我们在数据库上找到对应的主键 using System.ComponentMo ...

  7. python的学习之路(四)

    #迭代器,取值只能用next方法,不能随意取值name = iter([11,22,33,44])print(name.__next__())print(name.__next__())print(n ...

  8. HDU 6662 Acesrc and Travel 换根DP,宇宙最傻记录

    #include<bits/stdc++.h> typedef long long ll; using namespace std; const int maxn=1e6+50; cons ...

  9. 分布式锁的几种实现方法:redis实现分布式锁

    使用失效的方式实现分布式锁(推荐) import redis.clients.jedis.Jedis; /** * 使用redis实现分布式锁(推荐) * */ public class JedLoc ...

  10. linux centos 安装mongoDB

    1.下载mongoDB 例如下载3.2.19 64位版本 https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-3.2.19.tgz ...