Codeforces Round #369 (Div. 2) B. Chris and Magic Square (暴力)
Chris and Magic Square
题目链接:
http://codeforces.com/contest/711/problem/B
Description
```
ZS the Coder and Chris the Baboon arrived at the entrance of Udayland. There is a n × n magic grid on the entrance which is filled with integers. Chris noticed that exactly one of the cells in the grid is empty, and to enter Udayland, they need to fill a positive integer into the empty cell.
Chris tried filling in random numbers but it didn't work. ZS the Coder realizes that they need to fill in a positive integer such that the numbers in the grid form a magic square. This means that he has to fill in a positive integer so that the sum of the numbers in each row of the grid (), each column of the grid (), and the two long diagonals of the grid (the main diagonal — and the secondary diagonal — ) are equal.
Chris doesn't know what number to fill in. Can you help Chris find the correct positive integer to fill in or determine that it is impossible?
</big>
##Input
<big>
The first line of the input contains a single integer n (1 ≤ n ≤ 500) — the number of rows and columns of the magic grid.
n lines follow, each of them contains n integers. The j-th number in the i-th of them denotes ai, j (1 ≤ ai, j ≤ 109 or ai, j = 0), the number in the i-th row and j-th column of the magic grid. If the corresponding cell is empty, ai, j will be equal to 0. Otherwise, ai, j is positive.
It is guaranteed that there is exactly one pair of integers i, j (1 ≤ i, j ≤ n) such that ai, j = 0.
</big>
##Output
<big>
Output a single integer, the positive integer x (1 ≤ x ≤ 10^18) that should be filled in the empty cell so that the whole grid becomes a magic square. If such positive integer x does not exist, output - 1 instead.
If there are multiple solutions, you may print any of them.
</big>
##Examples
<big>
input
3
4 0 2
3 5 7
8 1 6
output
9
input
4
1 1 1 1
1 1 0 1
1 1 1 1
1 1 1 1
output
1
input
4
1 1 1 1
1 1 0 1
1 1 2 1
1 1 1 1
output
-1
</big>
##Note
<big>
In the first sample case, we can fill in 9 into the empty cell to make the resulting grid a magic square. Indeed,
The sum of numbers in each row is:
4 + 9 + 2 = 3 + 5 + 7 = 8 + 1 + 6 = 15.
The sum of numbers in each column is:
4 + 3 + 8 = 9 + 5 + 1 = 2 + 7 + 6 = 15.
The sum of numbers in the two diagonals is:
4 + 5 + 6 = 2 + 5 + 8 = 15.
In the third sample case, it is impossible to fill a number in the empty square such that the resulting grid is a magic square.
</big>
<br/>
##题意:
<big>
在n*n的矩阵中填充一个数,使得每行、每列、对角线的和均相等.
</big>
<br/>
##题解:
<big>
先找出那个需要填充的数,再暴力判断矩阵是否合法即可.
注意几点:longlong、填充数大于0、特判n=1的情况.
</big>
<br/>
##代码:
``` cpp
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <stack>
#include <vector>
#include <list>
#define LL long long
#define eps 1e-8
#define maxn 550
#define mod 100000007
#define inf 0x3f3f3f3f
#define mid(a,b) ((a+b)>>1)
#define IN freopen("in.txt","r",stdin);
using namespace std;
int n;
LL a[maxn][maxn];
int main(int argc, char const *argv[])
{
//IN;
while(scanf("%d" ,&n) != EOF)
{
int px, py;
for(int i=1; i<=n; i++) {
for(int j=1; j<=n; j++) {
scanf("%I64d", &a[i][j]);
if(a[i][j] == 0) {
px = i; py = j;
}
}
}
if(n == 1) {
printf("1\n");
continue;
}
LL sum = 0;
int row = 1; if(px==1) row = 2;
for(int i=1; i<=n; i++) {
sum += a[row][i];
}
LL tmp = sum;
for(int i=1; i<=n; i++) {
if(i != py) tmp -= a[px][i];
}
bool flag = 1;
if(tmp < 1) flag = 0;
a[px][py] = tmp;
for(int i=1; i<=n&&flag; i++) {
LL cur = 0;
for(int j=1; j<=n; j++) {
cur += a[i][j];
}
if(cur != sum) {
flag = 0;
break;
}
}
for(int i=1; i<=n&&flag; i++) {
LL cur = 0;
for(int j=1; j<=n; j++) {
cur += a[j][i];
}
if(cur != sum) {
flag = 0;
break;
}
}
LL cur = 0;
for(int i=1; i<=n&&flag; i++) {
cur += a[i][i];
}
if(cur != sum) flag = 0;
cur = 0;
for(int i=1; i<=n&&flag; i++) {
cur += a[i][n-i+1];
}
if(cur != sum) flag = 0;
if(flag) printf("%I64d\n", a[px][py]);
else printf("-1\n");
}
return 0;
}
Codeforces Round #369 (Div. 2) B. Chris and Magic Square (暴力)的更多相关文章
- Codeforces Round #369 (Div. 2) B. Chris and Magic Square 水题
B. Chris and Magic Square 题目连接: http://www.codeforces.com/contest/711/problem/B Description ZS the C ...
- Codeforces Round #365 (Div. 2) C - Chris and Road 二分找切点
// Codeforces Round #365 (Div. 2) // C - Chris and Road 二分找切点 // 题意:给你一个凸边行,凸边行有个初始的速度往左走,人有最大速度,可以停 ...
- Codeforces Round #369 (Div. 2) A B 暴力 模拟
A. Bus to Udayland time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- Codeforces Round #369 (Div. 2)---C - Coloring Trees (很妙的DP题)
题目链接 http://codeforces.com/contest/711/problem/C Description ZS the Coder and Chris the Baboon has a ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)
Coloring Trees Problem Description: ZS the Coder and Chris the Baboon has arrived at Udayland! They ...
- Codeforces Round #369 (Div. 2) D. Directed Roads 数学
D. Directed Roads 题目连接: http://www.codeforces.com/contest/711/problem/D Description ZS the Coder and ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees 动态规划
C. Coloring Trees 题目连接: http://www.codeforces.com/contest/711/problem/C Description ZS the Coder and ...
- Codeforces Round #369 (Div. 2) A. Bus to Udayland 水题
A. Bus to Udayland 题目连接: http://www.codeforces.com/contest/711/problem/A Description ZS the Coder an ...
- Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂
题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...
随机推荐
- Spring对Jdbc的封装——JdbcTemplate的使用
链接:https://pan.baidu.com/s/15luDElW4oeEaP0nvEQ_40w 提取码:i2r1 JdbcTemplate是Spring对JDBC的封装,目的是使JDBC更加易于 ...
- P1074 靶形数独 dfs+预处理
https://www.luogu.org/problemnew/show/P1074 显然是dfs 而且没有什么剪枝记忆化之类的 但是预处理比较麻烦 我用三个二维数组存状态:visx[x][i]代表 ...
- Docker最详细入门教程
Docker原理.详细入门教程 https://blog.csdn.net/deng624796905/article/details/86493330 阮一峰Docker入门讲解 http://ww ...
- 解决Jackson2反序列化LocalDateTime报错
今天在整合redis和spring boot的时候,遇到了一个错误,记录一下. 报错如下: Could not read JSON: Cannot construct instance of `jav ...
- Centos中使用Docker部署Apollo
采用微服务开发框架开发项目时会涉及多个系统,如果要更改配置参数需要在多个系统间逐一更改,比较费时,而且容易遗漏,效率低下,次问题可以采用Apollo配置中心的方式解决,下面将介绍如何配置: 准备环境: ...
- Nginx工作机制
Nginx分为单工作进程和多工作进程两种模式.通常采用1个master+多个worker进程配合异步非阻塞的工作机制.master进程主要负责管理自身和下属的worker进程,worker负责处理请求 ...
- HDU 2196 Computer( 树上节点的最远距离 )
Computer Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- web前后端数据交互
前后端数据交互是每一名web程序员必须熟悉的过程,前后端的数据交互重点在于前端是如何获取后端返回的数据,毕竟后端一般情况下只需要将数据封装到一个jsonMap,然后return就完了.下面通过一个li ...
- git Permanently added the RSA host key for IP address '13.250.177.223' to the list of known hosts.
只要把那个ip地址添加进hosts列表中就可解决. 参见:https://blog.csdn.net/hunhun1122/article/details/79752125
- SpringAOP用到了什么代理,以及动态代理与静态代理的区别
spring aop (面向切面)常用于数据库事务中,使用了2种代理. jdk动态代理:对实现了接口的类生成代理对象.要使用jdk动态代理,要求类必须要实现接口. cglib代理:对类生成代理对象. ...