1、还是以手写识别为类,至于为什么一直用手写识别这个例子,原因很简单,因为书上只给出了这个类子呀,哈哈哈,好神奇

下面是可视化学习的标准函数

'''
Created on 2017年5月23日 @author: weizhen
'''
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#minist_inference中定义的常量和前向传播的函数不需要改变,
#因为前向传播已经通过tf.variable_scope实现了计算节点按照网络结构的划分
import mnist_inference
from mnist_train import MOVING_AVERAGE_DECAY, REGULARAZTION_RATE,\
LEARNING_RATE_BASE, BATCH_SIZE, LEARNING_RATE_DECAY,TRAINING_STEPS,MODEL_SAVE_PATH,MODEL_NAME
INPUT_NODE = 784
OUTPUT_NODE =10
LAYER1_NODE = 500
def train(mnist):
#将处理输入数据集的计算都放在名子为"input"的命名空间下
with tf.name_scope("input"):
x=tf.placeholder(tf.float32, [None,mnist_inference.INPUT_NODE], name='x-input')
y_=tf.placeholder(tf.float32,[None,mnist_inference.OUTPUT_NODE],name='y-cinput')
regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
y=mnist_inference.inference(x, regularizer)
global_step = tf.Variable(0,trainable=False) #将滑动平均相关的计算都放在名为moving_average的命名空间下
with tf.name_scope("moving_average"):
variable_averages= tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY,global_step)
variable_averages_op=variable_averages.apply(tf.trainable_variables()) #将计算损失函数相关的计算都放在名为loss_function的命名空间下
with tf.name_scope("loss_function"):
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_,1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean+tf.add_n(tf.get_collection('losses')) #将定义学习率、优化方法以及每一轮训练需要执行的操作都放在名子为"train_step"的命名空间下
with tf.name_scope("train_step"):
learning_rate=tf.train.exponential_decay(LEARNING_RATE_BASE,
global_step,
mnist.train._num_examples/BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase=True)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) with tf.control_dependencies([train_step,variable_averages_op]):
train_op=tf.no_op(name='train') # 初始化Tensorflow持久化类
saver = tf.train.Saver()
with tf.Session() as sess:
tf.global_variables_initializer().run() # 在训练过程中不再测试模型在验证数据上的表现,验证和测试的过程将会有一个独立的程序来完成
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x:xs, y_:ys}) # 每1000轮保存一次模型
if i % 1000 == 0:
# 输出当前训练情况。这里只输出了模型在当前训练batch上的损失函数大小
# 通过损失函数的大小可以大概了解训练的情况。在验证数据集上的正确率信息
# 会有一个单独的程序来生成
print("After %d training step(s),loss on training batch is %g" % (step, loss_value)) # 保存当前的模型。注意这里给出了global_step参数,这样可以让每个被保存模型的文件末尾加上训练的轮数
# 比如"model.ckpt-1000"表示训练1000轮之后得到的模型
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step) #将当前的计算图输出到TensorBoard日志文件
writer=tf.summary.FileWriter("/path/to/log",tf.get_default_graph())
writer.close() def main(argv=None):
mnist = input_data.read_data_sets("/tmp/data",one_hot=True)
train(mnist) if __name__=='__main__':
tf.app.run()

下面是封装mnist_inference和mnist_train的函数

'''
Created on Apr 21, 2017 @author: P0079482
'''
#-*- coding:utf-8 -*-
import tensorflow as tf
#定义神经网络结构相关的参数
INPUT_NODE=784
OUTPUT_NODE=10
LAYER1_NODE=500 #通过tf.get_variable函数来获取变量。在训练神经网络时会创建这些变量:
#在测试时会通过保存的模型加载这些变量的取值。而且更加方便的是,因为可以在变量加载时
#将滑动平均变量重命名,所以可以直接通过同样的名字在训练时使用变量自身,
#而在测试时使用变量的滑动平均值。在这个函数中也会将变量的正则化损失加入损失集合
def get_weight_variable(shape,regularizer):
weights =tf.get_variable("weights",shape,initializer=tf.truncated_normal_initializer(stddev=0.1))
#当给出了正则化生成函数时,将当前变量的正则化损失加入名字为losses的集合。
#在这里使用了add_to_collection函数将一个张量加入一个集合,而这个集合的名称为losses
#这是自定义的集合,不在Tensorflow自动管理的集合列表中
if regularizer!=None:
tf.add_to_collection('losses',regularizer(weights))
return weights #定义神经网络的前向传播过程
def inference(input_tensor,regularizer):
#声明第一层神经网络的变量并完成前向传播过程
with tf.variable_scope('layer1'):
#这里通过tf.get_variable或tf.Variable没有本质区别,
#因为在训练或是测试中没有在同一个程序中多次调用这个函数,如果在同一个程序中多次调用,在第一次调用之后
#需要将reuse参数设置为True
weights=get_weight_variable([INPUT_NODE,LAYER1_NODE], regularizer)
biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
layer1=tf.nn.relu(tf.matmul(input_tensor,weights)+biases)
#类似地声明第二层神经网络的变量并完成前向传播过程
with tf.variable_scope('layer2'):
weights=get_weight_variable([LAYER1_NODE,OUTPUT_NODE], regularizer)
biases=tf.get_variable("biases",[OUTPUT_NODE],initializer=tf.constant_initializer(0.0))
layer2=tf.matmul(layer1,weights)+biases
#返回最后前向传播的结果
return layer2 #在上面这段代码中定义了神经网络的前向传播算法。无论是训练还是测试时
#都可以直接调用inference这个函数,而不用关心具体的神经网络结构
#使用定义好的前行传播过程,以下代码给出了神经网络的训练程序mnist_train.py

mnist_train

'''
Created on 2017年4月21日 @author: weizhen
'''
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 加载mnist_inference.py中定义的常量和前向传播的函数
import mnist_inference # 配置神经网络的参数
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARAZTION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99 # 模型保存的路径和文件名
MODEL_SAVE_PATH = "/path/to/model/"
MODEL_NAME = "model.ckpt" def train(mnist):
# 定义输入输出placeholder
x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
# 直接使用mnist_inference.py中定义的前向传播过程
y = mnist_inference.inference(x, regularizer)
global_step = tf.Variable(0, trainable=False) # 和5.2.1小节样例中类似地定义损失函数、学习率、滑动平均操作以及训练过程
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variable_averages_op = variable_averages.apply(tf.trainable_variables())
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step);
with tf.control_dependencies([train_step, variable_averages_op]):
train_op = tf.no_op(name='train') # 初始化Tensorflow持久化类
saver = tf.train.Saver()
with tf.Session() as sess:
tf.initialize_all_variables().run() # 在训练过程中不再测试模型在验证数据上的表现,验证和测试的过程将会有一个独立的程序来完成
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x:xs, y_:ys}) # 每1000轮保存一次模型
if i % 1000 == 0:
# 输出当前训练情况。这里只输出了模型在当前训练batch上的损失函数大小
# 通过损失函数的大小可以大概了解训练的情况。在验证数据集上的正确率信息
# 会有一个单独的程序来生成
print("After %d training step(s),loss on training batch is %g" % (step, loss_value)) # 保存当前的模型。注意这里给出了global_step参数,这样可以让每个被保存模型的文件末尾加上训练的轮数
# 比如"model.ckpt-1000"表示训练1000轮之后得到的模型
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step) def main(argv=None):
mnist = input_data.read_data_sets("/tmp/data", one_hot=True)
train(mnist) if __name__ == '__main__':
tf.app.run()

最后train的结果如下所示

Extracting /tmp/data\train-images-idx3-ubyte.gz
Extracting /tmp/data\train-labels-idx1-ubyte.gz
Extracting /tmp/data\t10k-images-idx3-ubyte.gz
Extracting /tmp/data\t10k-labels-idx1-ubyte.gz
2017-05-24 07:40:30.908053: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations.
2017-05-24 07:40:30.908344: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE2 instructions, but these are available on your machine and could speed up CPU computations.
2017-05-24 07:40:30.908752: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
2017-05-24 07:40:30.909048: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-05-24 07:40:30.909327: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-05-24 07:40:30.909607: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-05-24 07:40:30.910437: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-05-24 07:40:30.910691: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
After 1 training step(s),loss on training batch is 3.28252
After 1001 training step(s),loss on training batch is 0.186328
After 2001 training step(s),loss on training batch is 0.159306
After 3001 training step(s),loss on training batch is 0.137241
After 4001 training step(s),loss on training batch is 0.116301
After 5001 training step(s),loss on training batch is 0.114999
After 6001 training step(s),loss on training batch is 0.0968591
After 7001 training step(s),loss on training batch is 0.0888067
After 8001 training step(s),loss on training batch is 0.0787699
After 9001 training step(s),loss on training batch is 0.0755315
After 10001 training step(s),loss on training batch is 0.0674159
After 11001 training step(s),loss on training batch is 0.0618796
After 12001 training step(s),loss on training batch is 0.0608711
After 13001 training step(s),loss on training batch is 0.0582478
After 14001 training step(s),loss on training batch is 0.0588126
After 15001 training step(s),loss on training batch is 0.0474006
After 16001 training step(s),loss on training batch is 0.0472533
After 17001 training step(s),loss on training batch is 0.0463238
After 18001 training step(s),loss on training batch is 0.0504166
After 19001 training step(s),loss on training batch is 0.0397931
After 20001 training step(s),loss on training batch is 0.041655
After 21001 training step(s),loss on training batch is 0.0377509
After 22001 training step(s),loss on training batch is 0.0416359
After 23001 training step(s),loss on training batch is 0.0402487
After 24001 training step(s),loss on training batch is 0.0356911
After 25001 training step(s),loss on training batch is 0.0344556
After 26001 training step(s),loss on training batch is 0.0394917
After 27001 training step(s),loss on training batch is 0.0356403
After 28001 training step(s),loss on training batch is 0.0413135
After 29001 training step(s),loss on training batch is 0.0347861

可视化学习的过程,将log写在/path/to/log  文件夹下面,然后tensorboard去读取这个log

C:\Users\weizhen>tensorboard --logdir=/path/to/log

上面是layer1

上面是layer2

上面是loss_function

上面是moving_average

上面是train_step

上面是整体的结构tensorBoard

87、使用TensorBoard进行可视化学习的更多相关文章

  1. 88、使用tensorboard进行可视化学习,查看具体使用时间,训练轮数,使用内存大小

    ''' Created on 2017年5月23日 @author: weizhen ''' import os import tensorflow as tf from tensorflow.exa ...

  2. Tensorflow学习笔记3:TensorBoard可视化学习

    TensorBoard简介 Tensorflow发布包中提供了TensorBoard,用于展示Tensorflow任务在计算过程中的Graph.定量指标图以及附加数据.大致的效果如下所示, Tenso ...

  3. 可视化学习Tensorboard

    可视化学习Tensorboard TensorBoard 涉及到的运算,通常是在训练庞大的深度神经网络中出现的复杂而又难以理解的运算.为了更方便 TensorFlow 程序的理解.调试与优化,发布了一 ...

  4. TensorBoard:可视化学习

    数据序列化 TensorBoard 通过读取 TensorFlow 的事件文件来运行.TensorFlow 的事件文件包括了你会在 TensorFlow 运行中涉及到的主要数据.下面是 TensorB ...

  5. Pytorch在colab和kaggle中使用TensorBoard/TensorboardX可视化

    在colab和kaggle内核的Jupyter notebook中如何可视化深度学习模型的参数对于我们分析模型具有很大的意义,相比tensorflow, pytorch缺乏一些的可视化生态包,但是幸好 ...

  6. R语言可视化学习笔记之添加p-value和显著性标记

    R语言可视化学习笔记之添加p-value和显著性标记 http://www.jianshu.com/p/b7274afff14f?from=timeline   上篇文章中提了一下如何通过ggpubr ...

  7. Tensorflow搭建神经网络及使用Tensorboard进行可视化

    创建神经网络模型 1.构建神经网络结构,并进行模型训练 import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt ...

  8. Echart可视化学习集合

    一.基本介绍:ECharts是一款基于JavaScript的数据可视化图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表.ECharts最初由百度团队开源,并于2018年初捐赠给Apache ...

  9. TensorFlow实战第四课(tensorboard数据可视化)

    tensorboard可视化工具 tensorboard是tensorflow的可视化工具,通过这个工具我们可以很清楚的看到整个神经网络的结构及框架. 通过之前展示的代码,我们进行修改从而展示其神经网 ...

随机推荐

  1. 【Angular】No component factory found for ×××.

    报错现象: 用modal打开某个组件页面时报错 报错:No component factory found for UpdateAuthWindowComponent. Did you add it ...

  2. Makefile之自动化变量

    makefile自动化变量在大型项目的Makefile使用的太普遍了,如果你看不懂自动化变量,开源项目的makefile你是看不下去的. 以往总是看到一些项目的makefile,总是要翻gnu的Mak ...

  3. Java + selenium 元素定位(4)之By CSS

    这篇我要介绍元素定位的倒数第二个方法啦,就是基于CSS的元素定位.关于一些CSS的知识,我这里就不累赘的讲了,以后可能会单独写一篇关于CSS的介绍.当然个人推荐如果之前完全没有CSS只是储备的,可以选 ...

  4. Pikachu漏洞练习平台实验——暴力破解(一)

    概述 一个有效的字典可以大大提高暴力破解的效率 比如常用的用户名/密码TOP500 脱裤后的账号密码(社工库) 根据特定的对象(比如手机.生日和银行卡号等)按照指定的规则来生成密码 暴力破解流程 确认 ...

  5. linux下对rpm源码手工打补丁

    前言 通常情况rpm包组件管理方式下的linux环境,常用打补丁的方式只有一种:修改spec文件定义的Patch和patch字段,其实spec文件中调用的底层命令还是patch.  因为业务需要要编译 ...

  6. str方法

    'capitalize', 'casefold', 'center', 'count', 'encode', 'endswith', 'expandtabs', 'find', 'format', ' ...

  7. laravel打印查询的sql

    public function __construct( ){ $log = DB :: listen( function( $sql ){ echo $sql; } ); }

  8. k8s 组件介绍-API Server

    API Server简介 k8s API Server提供了k8s各类资源对象(pod,RC,Service等)的增删改查及watch等HTTP Rest接口,是整个系统的数据总线和数据中心. kub ...

  9. Php 十六进制短浮点数转十进制,带符号位

    /** * 十六进制浮点型转为十进制 * @param String $strHex 十六进制浮点数 * @return 十进制 */ public static function hexToDecF ...

  10. 44.Linked List Cycle II(环的入口节点)

    Level:   Medium 题目描述: Given a linked list, return the node where the cycle begins. If there is no cy ...