[CSP-S模拟测试]:小Y的图(最小生成树+LCA)
题目传送门(内部题131)
输入格式
第一行三个整数$n$、$m$和$Q$。
接下来$m$行每行三个整数$x$、$y$、$z$($1\leqslant x,y\leqslant n,1\leqslant z\leqslant 1,000,000$),表示有一条连接$x$和$y$长度为$z$的边。
接下来$Q$行每行两个整数$x$、$y$($x\neq y$),表示一组询问。
输出格式
$Q$行每行一个整数,表示一组询问的答案。
样例
样例输入:
5 5 4
1 2 3
1 3 2
3 2 1
1 4 5
2 4 4
1 2
1 4
3 5
2 4
样例输出:
2
4
-1
4
数据范围与提示
对于前$30\%$的测试数据,满足$1\leqslant n,m,Q\leqslant 1,000$。
对于另外$30\%$的测试数据,保证图联通。
对于$100\%$的测试数据,满足$1\leqslant n,m,Q\leqslant 300,000$。
对于$100\%$的测试数据,保证不存在自环,但可能存在重边。
请使用$scanf,printf$或速度更快的读入输出方式。
题解
有人问我$30\%$的暴力怎么打(问题是$ta$还$A$了)……
那我就简单说一下。
最短路思想,用$Dijkstra$,将原本的$dis[v]=dis[u]+e[i].w$改成$dis[v]=\max(dis[u],e[i].w)$就好了。
千万不要想当然,比方说下面这份代码$\downarrow$
认真看一下,虽说时间复杂度是对的,但是如果如下面这张图$\downarrow$
我们可能会选择$x\stackrel{2}{\rightarrow}o\stackrel{1}{\rightarrow}y$这条路径;然而当发现$x\stackrel{1}{\rightarrow}o$更优时会发现$o\rightarrow y$已经走过了,就不会再更新答案,这也就是为什么最短路不是这么求。
现在来说正解吧,先来考虑联通的情况。
这个最优路径上的所有边一定位于最小生成树上,所以可以求$x,y$到$lca$上的最长边即可。
不联通的情况也无非就是记录一下两个点在不在一个联通块内即可。
时间复杂度:$\Theta(m\log m+q\log n)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
struct node{int x,y,z;bool d;}b[300001];
struct rec{int nxt,to,w;}e[600001];
int head[300001],cnt,tot;
int n,m,Q;
int f[300001],depth[300001],bel[300001],fa[300001][21],mi[300001][21];
bool cmp(node a,node b){return a.z<b.z;}
int find(int x){return x==f[x]?x:f[x]=find(f[x]);}
void add(int x,int y,int w)
{
e[++cnt].nxt=head[x];
e[cnt].to=y;
e[cnt].w=w;
head[x]=cnt;
}
void dfs(int x)
{
bel[x]=tot;
for(int i=head[x];i;i=e[i].nxt)
{
if(depth[e[i].to])continue;
depth[e[i].to]=depth[x]+1;
fa[e[i].to][0]=x;
mi[e[i].to][0]=e[i].w;
for(int j=1;j<=20;j++)
{
fa[e[i].to][j]=fa[fa[e[i].to][j-1]][j-1];
mi[e[i].to][j]=max(mi[e[i].to][j-1],mi[fa[e[i].to][j-1]][j-1]);
}
dfs(e[i].to);
}
}
int LCA(int x,int y)
{
if(depth[x]>depth[y])swap(x,y);
int res=0;
for(int i=20;i>=0;i--)
if(depth[fa[y][i]]>=depth[x])
{
res=max(res,mi[y][i]);
y=fa[y][i];
}
if(x==y)return res;
for(int i=20;i>=0;i--)
if(fa[x][i]!=fa[y][i])
{
res=max(res,max(mi[x][i],mi[y][i]));
x=fa[x][i];y=fa[y][i];
}
return max(res,max(mi[x][0],mi[y][0]));
}
int main()
{
scanf("%d%d%d",&n,&m,&Q);
for(int i=1;i<=n;i++)f[i]=i;
for(int i=1;i<=m;i++)scanf("%d%d%d",&b[i].x,&b[i].y,&b[i].z);
sort(b+1,b+m+1,cmp);
for(int i=1;i<=m;i++)
{
int x=find(b[i].x);
int y=find(b[i].y);
if(x==y)continue;
b[i].d=1;
f[y]=x;
}
for(int i=1;i<=m;i++)
if(b[i].d)
{
add(b[i].x,b[i].y,b[i].z);
add(b[i].y,b[i].x,b[i].z);
}
for(int i=1;i<=n;i++)
if(!depth[i])
{
tot++;
depth[i]=1;
dfs(i);
}
while(Q--)
{
int x,y;
scanf("%d%d",&x,&y);
if(bel[x]!=bel[y])puts("-1");
else printf("%d\n",LCA(x,y));
}
return 0;
}
rp++
[CSP-S模拟测试]:小Y的图(最小生成树+LCA)的更多相关文章
- 5.19 省选模拟赛 小B的图 最小生成树 LCT
LINK:小B的图 这道题就比较容易了. 容易想到将询问离线 然后 从小到大排序 那么显然是优先放正图(x+k)的边. 考虑随着x的增大 那么负图上的边会逐渐加进来 一条边被加进来当且仅当 其权值小于 ...
- noip模拟赛 小Y的问题
[问题描述]有个孩子叫小 Y,一天,小 Y 拿到了一个包含 n 个点和 n-1 条边的无向连通图, 图中的点用 1~n 的整数编号.小 Y 突发奇想,想要数出图中有多少个“Y 字形”.一个“Y 字形” ...
- [CSP-S模拟测试]:小P的生成树(数学+Kruskal)
题目描述 小$P$是个勤于思考的好孩子,自从学习了最大生成树后,他就一直在想:能否将边权范围从实数推广到复数呢?可是马上小$P$就发现了问题,复数之间的大小关系并没有定义.于是对于任意两个复数$z_1 ...
- [CSP-S模拟测试]:小P的2048(模拟)
题目描述 最近,小$P$迷上了一款叫做$2048$的游戏.这块游戏在一个$n\times n$的棋盘中进行,棋盘的每个格子中可能有一个形如$2^k(k\in N^*)$的数,也可能是空的.游戏规则介绍 ...
- [CSP-S模拟测试]:小盆友的游戏(数学 or 找规律)
题目传送门(内部题110) 输入格式 第一行一个整数$N$,表示小盆友的个数. 第二行$N$个整数$A_i$,如果$A_i=-1$表示$i$目前是自由身,否则$i$是$A_i$的跟班. 输出格式 一个 ...
- [CSP-S模拟测试]:小奇的仓库(warehouse)(树形DP)
题目背景 小奇采的矿实在太多了,它准备在喵星系建个矿石仓库.令它无语的是,喵星系的货运飞船引擎还停留在上元时代! 题目描述 喵星系有$n$个星球,星球以及星球间的航线形成一棵树.从星球$a$到星球$b ...
- [CSP-S模拟测试]:小L的数(数位DP+模拟)
题目传送门(内部题132) 输入格式 第一行一个整数$t$. 接下来$t$行每行一个整数$n$. 输出格式 $t$行,每行一个整数表示答案. 样例 样例输入: 41818231232691052109 ...
- [CSP-S模拟测试]:小W的魔术(数学 or 找规律)
题目传送门(内部题130) 输入格式 第一行一个整数$n$,表示字符串的长度. 第二行一个只包含小写字母的字符串$s$. 输出格式 一行一个整数表示答案对$998244353$取模后的结果. 样例 样 ...
- [CSP-S模拟测试]:小P的单调数列(树状数组+DP)
题目描述 小$P$最近喜欢上了单调数列,他觉得单调的数列具有非常多优美的性质.经过小$P$复杂的数学推导,他计算出了一个单调增数列的艺术价值等于该数列中所有书的总和.并且以这个为基础,小$P$还可以求 ...
随机推荐
- 在Qt5使用中文(vs环境)
如果是使用mingw版本的Qt create, 也就是使用GCC编译器应该没那么多事吧. 不过我还是用惯了VS呢. 好了,废话不多说,开始总结vs下乱码的解决方案. vs2003 把源码存成 utf- ...
- Mysql主从分离介绍及实现
参考: http://www.cnblogs.com/panxuejun/p/5887118.html https://www.cnblogs.com/alvin_xp/p/4162249.html ...
- F12 开发人员工具中的控制台错误消息
使用此参考解释显示在 Internet Explorer 11 的控制台 和调试程序中的错误消息. 简介 使用 F12 开发人员工具进行调试时,错误消息(例如 EC7111 或 HTML1114)将显 ...
- python之jupyter安装与使用
Jupyter Notebook 的本质是一个 Web 应用程序,便于创建和共享文学化程序文档,支持实时代码,数学方程,可视化和 markdown.用途包括:数据清理和转换,数值模拟,统计建模,机器学 ...
- Vue的nextTick是什么?
公司做之前项目的时候,遇到了一些比较困惑的问题,后来研究明白了nextTick的用法. 我们先看两种情况: 第一种: export default { data () { return { msg: ...
- centos7网络配置脚本
如下参数根据实际情况修改 #!/bin/bash #设置网络环境 sed -i -e 's|BOOTPROTO=dhcp|BOOTPROTO=static|' /etc/sysconfig/netwo ...
- 关于mail mailx 以及sendmail 的理解
最近在弄邮件告警相关的东西,接触到了mail这一块,但是发送邮件的时间看到网上的用法 yum install mailx sednmail -y 这一块很迷糊 所以决定自己研究下 首先套用官话解释: ...
- CDH中Oozie无法卸载
问题:HUE依赖Oozie 所以Oozie不能够卸载,好坑啊 解决思路: 重新装回来,但是不启动Oozie,节约一部分性能.
- Linux inode 详解
操作系统的文件数据除了实际内容之外,通常含有非常多的属性,例如Linux操作系统的文件权限与文件属性.文件系统通常会将这两部分内容分别存放在inode和block中. inode 和 block 概述 ...
- CISCO SMARTnet服务和SMB服务技术支持
点击官网:SMB Support Assistant技术支持服务 点击官网:思科SMARTnet快速维护及快速维护现场服务 一.SMARTnet服务 1.1 标准SMARTnet 服务级别:5*8*N ...