spark 笔记 14: spark中的delay scheduling实现
// Figure out which locality levels we have in our TaskSet, so we can do delay scheduling
var myLocalityLevels = computeValidLocalityLevels()
var localityWaits = myLocalityLevels.map(getLocalityWait) // Time to wait at each level
// Delay scheduling variables: we keep track of our current locality level and the time we
// last launched a task at that level, and move up a level when localityWaits[curLevel] expires.
// We then move down if we manage to launch a "more local" task.
var currentLocalityIndex = 0 // Index of our current locality level in validLocalityLevels
// Set of pending tasks for each executor. These collections are actually
// treated as stacks, in which new tasks are added to the end of the
// ArrayBuffer and removed from the end. This makes it faster to detect
// tasks that repeatedly fail because whenever a task failed, it is put
// back at the head of the stack. They are also only cleaned up lazily;
// when a task is launched, it remains in all the pending lists except
// the one that it was launched from, but gets removed from them later.
private val pendingTasksForExecutor = new HashMap[String, ArrayBuffer[Int]]
// Set of pending tasks for each host. Similar to pendingTasksForExecutor,
// but at host level.
private val pendingTasksForHost = new HashMap[String, ArrayBuffer[Int]]
// Set of pending tasks for each rack -- similar to the above.
private val pendingTasksForRack = new HashMap[String, ArrayBuffer[Int]]
// Set containing pending tasks with no locality preferences.
var pendingTasksWithNoPrefs = new ArrayBuffer[Int]
var lastLaunchTime = clock.getTime() // Time we last launched a task at this level/**
* Compute the locality levels used in this TaskSet. Assumes that all tasks have already been
* added to queues using addPendingTask.
*
*/
private def computeValidLocalityLevels(): Array[TaskLocality.TaskLocality] = {
import TaskLocality.{PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY}
val levels = new ArrayBuffer[TaskLocality.TaskLocality]
if (!pendingTasksForExecutor.isEmpty && getLocalityWait(PROCESS_LOCAL) != 0 &&
pendingTasksForExecutor.keySet.exists(sched.isExecutorAlive(_))) {
levels += PROCESS_LOCAL
}
if (!pendingTasksForHost.isEmpty && getLocalityWait(NODE_LOCAL) != 0 &&
pendingTasksForHost.keySet.exists(sched.hasExecutorsAliveOnHost(_))) {
levels += NODE_LOCAL
}
if (!pendingTasksWithNoPrefs.isEmpty) {
levels += NO_PREF
}
if (!pendingTasksForRack.isEmpty && getLocalityWait(RACK_LOCAL) != 0 &&
pendingTasksForRack.keySet.exists(sched.hasHostAliveOnRack(_))) {
levels += RACK_LOCAL
}
levels += ANY
logDebug("Valid locality levels for " + taskSet + ": " + levels.mkString(", "))
levels.toArray
}
private def getLocalityWait(level: TaskLocality.TaskLocality): Long = {
val defaultWait = conf.get("spark.locality.wait", "3000")
level match {
case TaskLocality.PROCESS_LOCAL =>
conf.get("spark.locality.wait.process", defaultWait).toLong
case TaskLocality.NODE_LOCAL =>
conf.get("spark.locality.wait.node", defaultWait).toLong
case TaskLocality.RACK_LOCAL =>
conf.get("spark.locality.wait.rack", defaultWait).toLong
case _ => 0L
}
}
@DeveloperApi
object TaskLocality extends Enumeration {
// Process local is expected to be used ONLY within TaskSetManager for now.
val PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY = Value
type TaskLocality = Value
def isAllowed(constraint: TaskLocality, condition: TaskLocality): Boolean = {
condition <= constraint
}
}
/**
* Find the index in myLocalityLevels for a given locality. This is also designed to work with
* localities that are not in myLocalityLevels (in case we somehow get those) by returning the
* next-biggest level we have. Uses the fact that the last value in myLocalityLevels is ANY.
*/
def getLocalityIndex(locality: TaskLocality.TaskLocality): Int = {
var index = 0
while (locality > myLocalityLevels(index)) {
index += 1
}
index
}
/**
* Get the level we can launch tasks according to delay scheduling, based on current wait time.
*/
private def getAllowedLocalityLevel(curTime: Long): TaskLocality.TaskLocality = {
while (curTime - lastLaunchTime >= localityWaits(currentLocalityIndex) &&
currentLocalityIndex < myLocalityLevels.length - 1)
{
// Jump to the next locality level, and remove our waiting time for the current one since
// we don't want to count it again on the next one
lastLaunchTime += localityWaits(currentLocalityIndex)
currentLocalityIndex += 1
}
myLocalityLevels(currentLocalityIndex)
}
def recomputeLocality() {
val previousLocalityLevel = myLocalityLevels(currentLocalityIndex)
myLocalityLevels = computeValidLocalityLevels()
localityWaits = myLocalityLevels.map(getLocalityWait)
currentLocalityIndex = getLocalityIndex(previousLocalityLevel)
}
/**
* Compute the locality levels used in this TaskSet. Assumes that all tasks have already been
* added to queues using addPendingTask.
*
*/
private def computeValidLocalityLevels(): Array[TaskLocality.TaskLocality] = {
import TaskLocality.{PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY}
val levels = new ArrayBuffer[TaskLocality.TaskLocality]
if (!pendingTasksForExecutor.isEmpty && getLocalityWait(PROCESS_LOCAL) != 0 &&
pendingTasksForExecutor.keySet.exists(sched.isExecutorAlive(_))) {
levels += PROCESS_LOCAL
}
if (!pendingTasksForHost.isEmpty && getLocalityWait(NODE_LOCAL) != 0 &&
pendingTasksForHost.keySet.exists(sched.hasExecutorsAliveOnHost(_))) {
levels += NODE_LOCAL
}
if (!pendingTasksWithNoPrefs.isEmpty) {
levels += NO_PREF
}
if (!pendingTasksForRack.isEmpty && getLocalityWait(RACK_LOCAL) != 0 &&
pendingTasksForRack.keySet.exists(sched.hasHostAliveOnRack(_))) {
levels += RACK_LOCAL
}
levels += ANY
logDebug("Valid locality levels for " + taskSet + ": " + levels.mkString(", "))
levels.toArray
}
/**
* Dequeue a pending task for a given node and return its index and locality level.
* Only search for tasks matching the given locality constraint.
*
* @return An option containing (task index within the task set, locality, is speculative?)
*/
private def findTask(execId: String, host: String, maxLocality: TaskLocality.Value)
: Option[(Int, TaskLocality.Value, Boolean)] =
{
for (index <- findTaskFromList(execId, getPendingTasksForExecutor(execId))) {
return Some((index, TaskLocality.PROCESS_LOCAL, false))
}
。。。
// find a speculative task if all others tasks have been scheduled
findSpeculativeTask(execId, host, maxLocality).map {
case (taskIndex, allowedLocality) => (taskIndex, allowedLocality, true)}
}
spark 笔记 14: spark中的delay scheduling实现的更多相关文章
- spark 笔记 3:Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling
spark论文中说他使用了延迟调度算法,源于这篇论文:http://people.csail.mit.edu/matei/papers/2010/eurosys_delay_scheduling.pd ...
- spark 笔记 2: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing
http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf ucb关于spark的论文,对spark中核心组件RDD最原始.本质的理解, ...
- Apache Spark 2.2.0 中文文档 - Spark RDD(Resilient Distributed Datasets)论文 | ApacheCN
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD ...
- spark学习笔记总结-spark入门资料精化
Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用. ...
- Apache Spark 2.2.0 中文文档 - Spark Streaming 编程指南 | ApacheCN
Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Inp ...
- Apache Spark 2.2.0 中文文档
Apache Spark 2.2.0 中文文档 - 快速入门 | ApacheCN Geekhoo 关注 2017.09.20 13:55* 字数 2062 阅读 13评论 0喜欢 1 快速入门 使用 ...
- spark 笔记 7: DAGScheduler
在前面的sparkContex和RDD都可以看到,真正的计算工作都是同过调用DAGScheduler的runjob方法来实现的.这是一个很重要的类.在看这个类实现之前,需要对actor模式有一点了解: ...
- Apache Spark 2.2.0 中文文档 - Spark Streaming 编程指南
Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Inp ...
- 二、spark入门之spark shell:文本中发现5个最常用的word
scala> val textFile = sc.textFile("/Users/admin/spark-1.5.1-bin-hadoop2.4/README.md") s ...
随机推荐
- QT多线程同步之QWaitcondition
使用到多线程,无可避免的会遇到同步问题,qt提供几种同步线程的方法,在这里讲一下QWaitcondition的简单使用. 一.QWaitcondition,是通过一个线程达到某种条件来唤起另一个线程来 ...
- SQLAlchemy技术手册
一.ORM 框架简介 对象-关系映射(Object/Relation Mapping,简称ORM),是随着面向对象的软件开发方法发展而产生的.面向对象的开发方法是当今企业级应用开发环境中的主流开发方法 ...
- Cocos Creator 热更新文件MD5计算和需要注意的问题
Creator的热更新使用jsb.热更新基本按照 http://docs.cocos.com/creator/manual/zh/advanced-topics/hot-update.html?h=% ...
- Java 实现《编译原理》简单-语法分析功能-LL(1)文法 - 程序解析
Java 实现<编译原理>简单-语法分析功能-LL(1)文法 - 程序解析 编译原理学习,语法分析程序设计 (一)要求及功能 已知 LL(1) 文法为: G'[E]: E→TE' E'→+ ...
- BZOJ1787 [Ahoi2008]Meet 紧急集合[结论题]
location. 求到树上三点距离和最短的点及此距离. 这个不还是分类讨论题么,分两类大情况,如下图. 于是乎发现三个点对的lca中较深的那个lca是答案点.距离就是两两点对距离加起来除以2即可.这 ...
- DevExpress ASP.NET Core v19.1版本亮点:数据网格和树列表
行业领先的.NET界面控件DevExpress 发布了v19.1版本,本文将以系列文章的方式为大家介绍DevExpress ASP.NET Core Controls v19.1中新增的一些控件及增强 ...
- 关于sparksql
1.读取json文件,并且进行查询等操作 所使用的jar包为 json文件内容 { "id":1 ,"name":" Ella"," ...
- 一例基于thinkphp,jquery和bootstrap渲染的查询数据分页器
对于某些查询记录很多的结果,web页面不得不采用分页器,现在奉上一例代码,其主要逻辑是:由页面的dom 节点发起ajax请求,返回的查询结果根据页面布局需要进行切片:并根据总记录数和页面展现的条数算出 ...
- js 百分比显示页面加载进度
做东西遇到显示页面百分比的加载进度,不过里面的图片较多,看了别人的代码,才想到可以通过图片的加载显示加载的百分比,做一下笔记: html: <span id="percent" ...
- C++关于构造函数 和 析构函数 能否抛出异常的讨论
构造函数和析构函数分别管理对象的建立和释放,负责对象的诞生和死亡的过程.当一个对象诞生时,构造函数负责创建并初始化对象的内部环境,包括分配内存.创建内部对象和打开相关的外部资源,等等.而当对象死亡时, ...