Boost.Integer defines specialized for integers.

1. types for integers with number of bits

#include <boost/cstdint.hpp>
#include <iostream> int main()
{
boost::int8_t i8 = ;
std::cout << sizeof(i8) << std::endl; #ifndef BOOST_NO_INT64_T
boost::uint64_t ui64 = ;
std::cout << sizeof(ui64) << std::endl;
#endif boost::int_least8_t il8 = ;
std::cout << sizeof(il8) << std::endl; boost::uint_least32_t uil32 = ;
std::cout << sizeof(uil32) << std::endl; boost::int_fast8_t if8 = ;
std::cout << sizeof(if8) << std::endl; boost::uint_fast16_t uif16 = ;
std::cout << sizeof(uif16) << std::endl;
}

output:

1

8

1

4

1

8

types such as boost::int8_t and boost::uint64_t carry the exact memory size in their names. Thus boost::int8_t contains exactly 8 bits, and boost::uint64_t contains exactly 64 bits.

types such as boost::int_least8_t and boost::uint_least32_t contain at least as many bits as their names say. It is possible that the memory size of boost::int_least8_t will be greater than 8 bits and that of boost::uint_least32_t will be greater than 32 bits.

Types such as boost::int_fast8_t and boost::uint_fast16_t also have a minimum size. Their actual size is set to a value that guarantees the best performance.

2. more specialized types for integers

#include <boost/cstdint.hpp>
#include <iostream> int main()
{
boost::intmax_t imax = ;
std::cout << sizeof(imax) << std::endl; std::cout << sizeof(UINT8_C()) << std::endl; #ifndef BOOST_NO_INT64_T
std::cout << sizeof(INT64_C()) << std::endl;
#endif return ;
}

output

8

4

8

Boost.Integer defines two types, boost::intmax_t and boost::uintmax_t, for the maximum width integer types available on a platform.

Boost.Accumulators

An accumulator is a container that calculates a new result every time a value is inserted. The value isn't necessary stored in the accumulator. Instead the accumulator continuously updates intermediary results as it is fed new values.

1. boost::accumulators::tag::count

#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics.hpp>
#include <iostream> using namespace boost::accumulators; int main()
{
accumulator_set<int, features<tag::count>> acc;
acc();
acc(-);
acc();
std::cout << count(acc) << std::endl;
return ;
}

boost::accumulators::accumulator_set is a template that expects as its first parameter the type of the values that will be processed. The second parameter specifies the accumulators you want to use.

An object of type boost::accumulators::accumulator_set can be used like a function. Values can be passed by calling operator(). They are immediately processed. The values passed must have the same type as was passed as the first template parameter to boost::accumulators::accumulator_set.

For every feature, there is an identically named extrator. An extrator receives the current result of an accumulator.

2. using mean and variance

#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics.hpp>
#include <iostream> using namespace boost::accumulators; int main()
{
accumulator_set<double, features<tag::mean, tag::variance>> acc;
acc();
acc();
acc();
acc();
acc();
std::cout << mean(acc) << std::endl;
std::cout << variance(acc) << std::endl;
return ;
}

uses the two features boost::accumulators::tag::mean and boost::accumulators::tag::variance to calculate the mean and the variance of five values. The accumulators selected with boost::accumulators::tag::variance uses weight. If weights are not set explicitly, all values are given the same weight.

3. calculating the weighted variance

#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics.hpp>
#include <iostream> using namespace boost::accumulators; int main()
{
accumulator_set<double, features<tag::mean, tag::variance>, int> acc;
acc(, weight = );
acc(, weight = );
acc(, weight = );
acc(, weight = );
acc(, weight = );
std::cout << mean(acc) << std::endl;
std::cout << variance(acc) << std::endl;
return ;
}

Boost.Accumulators uses Boost.Parameter to pass additional parameters, such as weights, as name/value pairs. The parameter name for weights is weight. You can treat the parameter like a variable and assign a value. The name/value pair is passed as an additional parameter after every value to the accumulator.

Boost.MinMax

1. boost::minmax()

#include <boost/algorithm/minmax.hpp>
#include <boost/tuple/tuple.hpp>
#include <iostream> int main()
{
int i = ;
int j = ; boost::tuples::tuple<const int&, const int&> t = boost::minmax(i, j); std::cout << t.get<>() << std::endl;
std::cout << t.get<>() << std::endl;
return ;
}

boost::minmax() returns two values as a tuple. The first reference in the tuple points to the minimum and the second to the maximum.

2. boost::minmax_element()

#include <boost/algorithm/minmax_element.hpp>
#include <array>
#include <utility>
#include <iostream> int main()
{
typedef std::array<int, > array;
array a{{, , , }}; std::pair<array::iterator, array::iterator> p = boost::minmax_element(a.begin(), a.end()); std::cout << *p.first << std::endl;
std::cout << *p.second << std:endl; return ;
}

Unlike boost::minmax(), boost::minmax_element() returns a std::pair containing two iterators. The first iterator points to the minimum and the second points to the maximum.

Boost.Random

1.

#include <boost/random.hpp>
#include <boost/random/random_device.hpp>
#include <iostream>
#include <ctime>
#include <cstdint> int main()
{
std::time_t now = std::time();
boost::random::mt19937 gen{static_cast<std::uint32_t>(now)};
std::cout << gen() << std::endl; boost::random::bernoulli_distribution<> dist1;
std::cout << dist1(gen) << std::endl; boost::random::uniform_int_distribution<> dist2{, };
std::cout << dist2(gen) << std::endl; boost::random::random_device gen2;
std::cout << gen2() << std::endl; return ;
}

Nearly all of the random number generators provided by Boost.Random are pseudo-random number generators. Pseudo-random number generators don’t generate real random numbers. They are based on algorithms that generate seemingly random numbers. boost::random::mt19937 is one of these pseudo-random number generators.

boost::random::random_device is a non-deterministic random number generator, which is a random number generator that can generate real random numbers. There is no algorithm that needs to be initialized. Thus, predicting the random numbers is impossible. Non-deterministic random number generators are often used in security-related applications.

Because a coin has only two sides, the random number generator should return 0 or 1. boost::random::bernoulli_distribution is a distribution that returns one of two possible results.

uses a distribution that is often needed: boost::random::uniform_int_distribution. This distribution lets you define the range of random numbers you need.

Boost.NumericConversion

1.

#include <boost/numeric/conversion/cast.hpp>
#include <iostream> int main()
{
try {
int i = 0x10000;
short s = boost::numeric_cast<short>(i);
std::cout << s << std::endl;
} catch (boost::numeric::bad_numeric_cast &e)
{
std::cerr << e.what() << std::endl;
} return ;
}

boost::numeric_cast does the same conversion as C++, but it verifies whether the conversion can take place without changing the value being converted. Example above of verification fails, and an exception of type boost::numeric::bad_numeric_cast is thrown because 0x10000 is too big to be placed in a variable of type short.

boost number handling的更多相关文章

  1. jqu

    1 /*2 * 说明:3 * 本源代码的中文注释乃Auscarlin呕心沥血所作.旨在促进jQuery的传播以及向广大jQuery爱好者提供一个进阶4 *的途径,以让各位更加深入地了解jQuery,学 ...

  2. 优秀的PHP开源项目集合

    包管理Package Management Package Management Related 框架 框架组件 微框架Micro Frameworks 内容管理系统Content Managemen ...

  3. github上所有大于800 star OC框架

    https://github.com/XCGit/awesome-objc-frameworks#awesome-objc-frameworks awesome-objc-frameworks ID ...

  4. PHP框架、库和软件资源大全(整理篇)

    php的资料 https://github.com/ziadoz/awesome-php Awesome PHP A curated list of amazingly awesome PHP lib ...

  5. Lucene学习总结之八:Lucene的查询语法,JavaCC及QueryParser

    一.Lucene的查询语法 Lucene所支持的查询语法可见http://lucene.apache.org/java/3_0_1/queryparsersyntax.html (1) 语法关键字 + ...

  6. ios7毛玻璃效果实现

    首先看效果:       核心代码: //加模糊效果,image是图片,blur是模糊度 - (UIImage *)blurryImage:(UIImage *)image withBlurLevel ...

  7. C++开源代码项目汇总

    Google的C++开源代码项目 v8  -  V8 JavaScript EngineV8 是 Google 的开源 JavaScript 引擎.V8 采用 C++ 编写,可在谷歌浏览器(来自 Go ...

  8. Squid调试和故障处理

    http://blog.zhdata.com/tag/squid第16章 调试和故障处理 16.1 一些通用问题 在讨论通用debug前,我先提起一些经常发生的问题. 16.1.1 “Failed t ...

  9. Google的C++开源代码项

    转:http://blog.csdn.net/wenrenhua08/article/details/40040903 v8  -  V8 JavaScript EngineV8 是 Google 的 ...

随机推荐

  1. laravel5.6 常规框架部署和配置文件说明

    示例demo文件位置: 入口默认index.php文件地址: 例如: /laravel5.6/public/index.php (1) 必须先初始化路由web.php文件地址: 例如: /larave ...

  2. php heredoc的用法详解

    Heredoc技术,在正规的PHP文档中和技术书籍中一般没有详细讲述,只是提到了这是一种Perl风格的字符串输出技术.但是现在的一些论坛程序,和部分文章系统,都巧妙的使用heredoc技术,来部分的实 ...

  3. Js获取屏幕宽度、高度

    document.body.clientWidth ==> BODY对象宽度 document.body.clientHeight ==> BODY对象高度 document.docume ...

  4. LLDB动态调试

  5. excel wps access mysql数据表格的查询之路

    简直血崩,最近去做兼职,每天都有大量的表格数据要整理. 开始 还是 用 excel的用起来还算顺畅,慢慢慢慢的发现了各种弊端.大概类似于分组排序什么什么的好多啦~~~不过也确实是用了不到两个小时就能比 ...

  6. mglearn初探

    这个是取自于<python机器学习基础教程>16页 代码: # import numpy as np # import matplotlib.pyplot as plt # import ...

  7. django的配置

    1.django的默认配置 import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) # 获取 ...

  8. 10: Django + Uwsgi + Nginx 的生产环境部署

    1.1 一些重要概念 1.Web协议介绍 Web协议出现顺序: CGI -> FCGI -> WSGI -> uwsgi 1. CGI:  最早的协议 2. FCGI:  比CGI快 ...

  9. Thinkphp在nginx设置同域名二级目录访问

    Thinkphp在nginx设置同域名二级目录访问,是因为最近弄一个小程序项目,要https,但是只有单个域名,不能通配域名,所有只好用二级目录,thinkphp二级目录访问要怎么设置呢 下面是ngi ...

  10. 自己做的html5手机站点

    这个站点採用html5+css3+jquerymobile 仅仅开发了前台的功能,前台的界面比較美观,后端不方便放上,各位有空能够自己开发这个站点的界面有參考各个菜谱站点的页面的样式,可是又不一样,是 ...