BZOJ4990 (LCS转LIS)
题面
https://www.lydsy.com/JudgeOnline/problem.php?id=4990
分析
首先可以看出一个简单的DP
dp[i][j]表示序列a前i个与序列b前j个连线数量
dp[i][j]=max(dp[i−1][j],dp[i][j−1],dp[i−1][j−1](∣a[i]−b[j]∣<=4))
这样DP的时间复杂度为O(n^2)
发现该方程除了转移的判断条件之外和LCS并无什么不同,因此可考虑LCS的优化方法
提示:阅读下面内容前,请先确保自己掌握一般情况下LCS转LIS的过程,以及LIS的O(nlog2n)O(nlog_2n)算法
考虑LCS转LIS,原本的方法是记录a[i]中每个值的位置pos,将b[i]转化为pos[b[i]]
既然∣a[i]−b[j]∣<=4都可杯看做“相等”
则我们对于每个b[i]±j (0<=j<=4),将pos[b[i]±j]加入数组c,求c的LIS即为答案
但注意到每个点只能连一条边,也就是对于每个b[i],9个b[i]±j中只能选一个加入LIS
所以将9个一组从大到小排序,再拼起来,这样每组数中至多有一个数被选进LIS,(若选两个,则c[i]>c[i+1],矛盾)
时间复杂度O(nlog_2n)
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define maxn 100005
using namespace std;
int n;
int a[maxn],b[maxn];
int pos[maxn];
vector<int>tmp;
vector<int>c;
int s[maxn*9];
int m;
int cmp(int x,int y) {
return x>y;
}
int solve() {
for(int i=1;i<=n;i++){
tmp.clear();
for(int j=0;j<=4;j++){
if(b[i]+j<=n) tmp.push_back(pos[b[i]+j]);
if(b[i]-j>=1) tmp.push_back(pos[b[i]-j]);
}
sort(tmp.begin(),tmp.end(),cmp);
int t=tmp.size();
for(int j=0;j<t;j++){
c.push_back(tmp[j]);
}
}
int m=c.size();
// for(int i=0;i<m;i++) printf("%d ",c[i]);
// printf("\n");
int top=0;
for(int i=0; i<m; i++) {
if(c[i]>s[top]) {
s[++top]=c[i];
} else {
int tmp=lower_bound(s+1,s+1+top,c[i])-s;
s[tmp]=c[i];
}
}
return top;
}
int main() {
scanf("%d",&n);
for(int i=1; i<=n; i++) {
scanf("%d",&a[i]);
pos[a[i]]=i;
}
for(int i=1; i<=n; i++) {
scanf("%d",&b[i]);
}
printf("%d\n",solve());
}
BZOJ4990 (LCS转LIS)的更多相关文章
- O(nlogn)实现LCS与LIS
序: LIS与LCS分别是求一个序列的最长不下降序列序列与两个序列的最长公共子序列. 朴素法都可以以O(n^2)实现. LCS借助LIS实现O(nlogn)的复杂度,而LIS则是通过二分搜索将复杂度从 ...
- 最长公共子序列-LCS问题 (LCS与LIS在特殊条件下的转换) [洛谷1439]
题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出 一个数,即最长公共子序列的长度 输入样例 5 ...
- UVa10635 - Prince and Princess(LCS转LIS)
题目大意 有两个长度分别为p+1和q+1的序列,每个序列中的各个元素互不相同,且都是1~n^2之间的整数.两个序列的第一个元素均为1.求出A和B的最长公共子序列长度. 题解 这个是大白书上的例题,不过 ...
- BZOJ 1264 基因匹配Match(LCS转化LIS)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1264 题意:给出两个数列,每个数列的长度为5n,其中1-n每个数字各出现5次.求两个数列 ...
- uva 10635 Prince and Princess(LCS成问题LIS问题O(nlogn))
标题效果:有两个长度p+1和q+1该序列.的各种元素的每个序列不是相互同.并1~n^2之间的整数.个序列的第一个元素均为1. 求出A和B的最长公共子序列长度. 分析:本题是LCS问题,可是p*q< ...
- LCS and LIS
LCS #include<bits/stdc++.h> using namespace std; typedef long long ll; int n,m; char s[1005],t ...
- BZOJ1264 [AHOI2006]基因匹配Match 【LCS转LIS】
题目链接 BZOJ1264 题解 平凡的\(LCS\)是\(O(n^2)\)的 显然我们要根据题目的性质用一些不平凡的\(LCS\)求法 这就很巧妙了,, 我们考虑\(A\)序列的每个位置可能匹配\( ...
- uva 10635 LCS转LIS
这道题两个数组都没有重复的数字,用lcs的nlogn再适合不过了 #include <iostream> #include <string> #include <cstr ...
- Uva 10635 Prince and Princess (LCS变形LIS)
直接LCS是时间复杂度是O(p*q)的,但是序列元素各不相同,只要把其中一个序列映射成有序的, 另外一个序列再做相同的映射,没有的直接删掉,就变成了求另一个序列LIS. #include<bit ...
随机推荐
- css3-background clip 和background origin
1.background-origin background-origin 里面有3个参数 : border-box | padding-box | content-box; border-box,p ...
- bzoj2906 颜色 分块+块大小分析
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2906 题解 如果可以离线的话,那么这个题目就是一个莫队的裸题. 看上去这个数据范围也还会一个根 ...
- java多线程sleep,wait,yield方法区别
sleep() 方法sleep()的作用是在指定的毫秒数内让当前“正在执行的线程”休眠(暂停执行).这个“正在执行的线程”是指this.currentThread()返回的线程.sleep方法有两个重 ...
- 解决json不能解析换行问题
今天遇到一个问题,当我读取数据库中某条带换行的数据时,解析错误. 解决方法是在存入数据库时对数据做处理,把换行换成其他字符.代码如下: remark = remark.replace(/\n/g,&q ...
- 「概率,期望DP」总结
期望=Σ概率*权值 1. Codeforces 148-D 考虑用$f[i][j]$表示princess进行操作时[还剩有i只w,j只b]这一状态的存在概率.这一概率要存在,之前draw out的一定 ...
- signup图片上传预览经常总结
html <html> <head> <meta charset="utf-8" /> <meta http-equiv="X- ...
- Oracle--SQL程序优化案例一
下面是存储过程的一部分程序: PROCEDURE SAP_MAN_ROUTING_SO (CITEM_ID VARCHAR2, C ...
- Qt之zip压缩/解压缩(QuaZIP)
摘要: 简述 QuaZIP是使用Qt/C++对ZLIB进行简单封装的用于压缩及解压缩ZIP的开源库.适用于多种平台,利用它可以很方便的将单个或多个文件打包为zip文件,且打包后的zip文件可以通过其它 ...
- el-date-picker用法
需求:1.默认时间是当天开始到此刻的时间 2.快捷键为今天.昨天.最近一周.最近30天.最近90天 3.不可以清空,必选项
- Linux内核调试方法总结之bugreport
bugreport [用途]Android性能分析工具,bugreport记录了Android启动过程日志,启动后的系统状态,包括进程列表.内存信息.VM信息等 [使用方法] Adb bugrepor ...