[luogu]P1070

道路游戏

题目描述
小新正在玩一个简单的电脑游戏。
游戏中有一条环形马路,马路上有 n 个机器人工厂,两个相邻机器人工厂之间由一小段马路连接。小新以某个机器人工厂为起点,按顺时针顺序依次将这 n 个机器人工厂编号为1~n,因为马路是环形的,所以第 n 个机器人工厂和第 1 个机器人工厂是由一段马路连接在一起的。小新将连接机器人工厂的这 n 段马路也编号为 1~n,并规定第 i 段马路连接第 i 个机器人工厂和第 i+1 个机器人工厂(1≤i≤n-1),第 n 段马路连接第 n 个机器人工厂和第 1个机器人工厂。
游戏过程中,每个单位时间内,每段马路上都会出现一些金币,金币的数量会随着时间发生变化,即不同单位时间内同一段马路上出现的金币数量可能是不同的。小新需要机器人的帮助才能收集到马路上的金币。所需的机器人必须在机器人工厂用一些金币来购买,机器人一旦被购买,便会沿着环形马路按顺时针方向一直行走,在每个单位时间内行走一次,即从当前所在的机器人工厂到达相邻的下一个机器人工厂,并将经过的马路上的所有金币收集给小新,例如,小新在 i(1≤i≤n)号机器人工厂购买了一个机器人,这个机器人会从 i 号机器人工厂开始,顺时针在马路上行走,第一次行走会经过 i 号马路,到达 i+1 号机器人工厂(如果 i=n,机器人会到达第 1 个机器人工厂),并将 i 号马路上的所有金币收集给小新。 游戏中,环形马路上不能同时存在 2 个或者 2 个以上的机器人,并且每个机器人最多能够在环形马路上行走 p 次。小新购买机器人的同时,需要给这个机器人设定行走次数,行走次数可以为 1~p 之间的任意整数。当马路上的机器人行走完规定的次数之后会自动消失,小新必须立刻在任意一个机器人工厂中购买一个新的机器人,并给新的机器人设定新的行走次数。

以下是游戏的一些补充说明:

游戏从小新第一次购买机器人开始计时。
购买机器人和设定机器人的行走次数是瞬间完成的,不需要花费时间。
购买机器人和机器人行走是两个独立的过程,机器人行走时不能购买机器人,购买完机器人并且设定机器人行走次数之后机器人才能行走。
在同一个机器人工厂购买机器人的花费是相同的,但是在不同机器人工厂购买机器人的花费不一定相同。
购买机器人花费的金币,在游戏结束时再从小新收集的金币中扣除,所以在游戏过程中小新不用担心因金币不足,无法购买机器人而导致游戏无法进行。也因为如此,游戏结束后,收集的金币数量可能为负。
现在已知每段马路上每个单位时间内出现的金币数量和在每个机器人工厂购买机器人需要的花费,请你告诉小新,经过 m 个单位时间后,扣除购买机器人的花费,小新最多能收集到多少金币。

输入输出格式
输入格式:
第一行 3 个正整数,n,m,p,意义如题目所述。
接下来的 n 行,每行有 m 个正整数,每两个整数之间用一个空格隔开,其中第 i 行描
述了 i 号马路上每个单位时间内出现的金币数量(1≤金币数量≤100),即第 i 行的第 j(1≤j≤m)个数表示第 j 个单位时间内 i 号马路上出现的金币数量。
最后一行,有 n 个整数,每两个整数之间用一个空格隔开,其中第 i 个数表示在 i 号机器人工厂购买机器人需要花费的金币数量(1≤金币数量≤100)。
输出格式:
共一行,包含 1 个整数,表示在 m 个单位时间内,扣除购买机器人
花费的金币之后,小新最多能收集到多少金币。

输入输出样例
输入样例1#:
2 3 2
1 2 3
2 3 4
1 2
输出样例1#:
5

说明
【数据范围】
对于 40%的数据,2≤n≤40,1≤m≤40。
对于 90%的数据,2≤n≤200,1≤m≤200。
对于 100%的数据,2≤n≤1000,1≤m≤1000,1≤p≤m。
NOIP 2009 普及组 第四题


这道题蒟蒻觉得挺难的。
用f[i][j]表示在第i个时间走到j的最佳收益
转移需要->f[i-k][j-k]
注意到可以任意选起始点,我们只需要ith的最优即可。
考虑状态f[i]=Min{f[i-k]+value[j-k][j]-cost[j-k]}
时间复杂度应该是O(n^3)
可能是数据弱,水过了...

代码:

 #include<iostream>
 #include<cstdio>
 #include<cstring>
 using namespace std;
 inline int read();
 int Max(int x,int y){return x>y?x:y;}
 namespace lys{
      ;
     int dp[N],v[N][N],cost[N];
     int n,m,p;
     int main(){
         int i,j,k;
         int last,s;
         n=read(); m=read(); p=read();
         ;i<=n;i++)
             ;j<=m;j++) v[i][j]=read();
         ;i<=n;i++) cost[i]=read();
         memset(dp,-,sizeof dp);
         dp[]=;
         ;i<=m;i++){
             ;j<=n;j++){
                 last=j-;
                 if(!last) last=n;
                 s=v[last][i];
                 ;k<=p;k++){
                     if(i<k) break ;
                     dp[i]=Max(dp[i],dp[i-k]+s-cost[last]);
                     last--;
                     if(!last) last=n;
                     s+=v[last][i-k];
                 }
             }
         }
         printf("%d\n",dp[m]);
         ;
     }
 }
 int main(){
     lys::main();
     ;
 }
 inline int read(){
     ,ff=;
     char c=getchar();
     '){
         ;
         c=getchar();
     }
     +c-',c=getchar();
     return kk*ff;
 }

[luogu]P1070 道路游戏[DP]的更多相关文章

  1. 洛谷 P1070 道路游戏 DP

    P1070 道路游戏 题意: 有一个环,环上有n个工厂,每个工厂可以生产价格为x的零钱收割机器人,每个机器人在购买后可以沿着环最多走p条边,一秒走一条,每条边不同时间上出现的金币是不同的,问如何安排购 ...

  2. luogu P1070 道路游戏

    传送门 这里设\(f_i\)表示时刻\(i\)的答案 转移的话在\([i-p+1,i-1]\)之间枚举j,然后考虑从哪个点走过来 复杂度为\(O(n^3)\) // luogu-judger-enab ...

  3. 洛谷 P1070 道路游戏 解题报告

    P1070 道路游戏 题目描述 小新正在玩一个简单的电脑游戏. 游戏中有一条环形马路,马路上有\(n\)个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针顺序依 ...

  4. 洛谷P1070 道路游戏

    P1070 道路游戏 题目描述 小新正在玩一个简单的电脑游戏. 游戏中有一条环形马路,马路上有 n 个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针顺序依次将 ...

  5. 【题解】洛谷P1070 道路游戏(线性DP)

    次元传送门:洛谷P1070 思路 一开始以为要用什么玄学优化 没想到O3就可以过了 我们只需要设f[i]为到时间i时的最多金币 需要倒着推回去 即当前值可以从某个点来 那么状态转移方程为: f[i]= ...

  6. 洛谷P1070 道路游戏(dp+优先队列优化)

    题目链接:传送门 题目大意: 有N条相连的环形道路.在1-M的时间内每条路上都会出现不同数量的金币(j时刻i工厂出现的金币数量为val[i][j]).每条路的起点处都有一个工厂,总共N个. 可以从任意 ...

  7. P1070 道路游戏

    题目描述 小新正在玩一个简单的电脑游戏. 游戏中有一条环形马路,马路上有 n 个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针顺序依次将这 n 个机器人工厂编 ...

  8. Luogu 1070 道路游戏

    看完题面想了一会发现只会写$n^3$,愣了一会才想出了单调队列优化的做法. 90分算法: 设$f_{i, j, k}$表示第$i$分钟在第$j$座城市已经走了$k$步的最大价值,转移显然,时间复杂度$ ...

  9. 洛谷 P1070 道路游戏(noip 2009 普及组 第四题)

    题目描述 小新正在玩一个简单的电脑游戏. 游戏中有一条环形马路,马路上有 nn个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针顺序依次将这 nn个机器人工厂编 ...

随机推荐

  1. mysql——多表——子查询——示例

    子查询: 子查询是将一个查询语句嵌套在另外一个查询语句中,内层查询语句的查询结果,可以作为外来层查询语句提供查询条件. 因此在特定条件下,一个查询语句的条件,需要另外一个查询语句来获取. 前期准备表: ...

  2. neo4j - 查询效率的几种优化思路

    最近在公司实习做的就是优化neo4j图形数据库查询效率的事,公司提供的是一个在Linux上搭建且拥有几亿个节点的数据库.开始一段时间主要是熟悉该数据库的一些基本操作,直到上周才正式开始步入了优化数据库 ...

  3. 模板 - 强连通分量 - Kosaraju

    Kosaraju算法 O(n+m) vector<int> s; void dfs1(int u) { vis[u] = true; for (int v : g[u]) if (!vis ...

  4. 0-1-Tree CodeForces - 1156D (并查集)

    大意: 给定树, 边权为黑或白, 求所有有向路径条数, 满足每走过一条黑边后不会走白边. 这题比赛的时候想了个假算法, 还没发现..... 显然所求的路径要么全黑, 要么全白, 要么先全白后全黑, 所 ...

  5. google浏览器切换成中文

    新浪下载地址:http://down.tech.sina.com.cn/content/40975.html 默认字体好像是西班牙语 1.浏览器地址chrome://settings/language ...

  6. 大数据计算引擎之Flink Flink状态管理和容错

    这里将介绍Flink对有状态计算的支持,其中包括状态计算和无状态计算的区别,以及在Flink中支持的不同状态类型,分别有 Keyed State 和 Operator State .另外针对状态数据的 ...

  7. java中的进制转换

    java中的进制转换及转换函数 转自:https://blog.csdn.net/V0218/article/details/74945203 Java的进制转换 进制转换原理 十进制 转 二进制: ...

  8. HTML-复杂动画和变形

    1.复杂动画 (1)涉及到的属性: animation-name:动画名称: animation-duration:单次动画总时长: animation-timing-function:时间函数: a ...

  9. Git 操作 GitHub

    Git安装 https://www.cnblogs.com/taopanfeng/p/11076702.html 设置用户名(设置一次 以后就不用再设置了) git config --global u ...

  10. Python Requests库 Get和Post的区别和Http常见状态码

    (1)   在客户端,Get方式在通过URL提交数据,数据在URL中可以看到:POST方式,数据放置在HTML HEADER内提交. (2)   GET方式提交的数据最多只能有1024 Byte,而P ...