题目

Farmer John 正在在计划自己的农场漫步。他的农场的结构就像一棵树:农场有N个谷仓(1<= N <=100,000),分别由N-1条路链接。这样,他便可以通过这些谷仓间的道路遍及各个谷仓。Farmer John想要选择一条路线:这条路线的起点和终点分别为农场中两个不同的谷仓,这条路线不能重复经过一条边两次。Farmer John担心这条路径可能会偏长,所以他想在路线上寻找一个休息点(当然这个休息点不能为起点或者终点)。

每条边的两旁都是牛群,要么是Charcolais(白毛),要么是Angus(黑毛)。Farmer John是一个聪明人,所以他想要在他通过小路的同时平衡小路两侧阴阳的力量。他要选择一条路径使得他从起点到休息站,和从休息站到终点这两段路上都满足路两边的Charcolais牛群和Angus牛群总数量相同。

Farmer John好奇他能找到多少条如上所述的平衡的路径。我们认为,当且仅当两条路线的边的集合不同时,这两条路径才被认为是不同的,否则认为是相同的路线。就算路线上有多个有效的“休息站”的位置能使路线平衡,我们也只记为一条路线。

请帮助计算有多少条不同的平衡路线。

分析

这是一道不错的点分治练手题目,不难很容易打。

但不知道为神马,旁边的几个逗逼ly、风筝都是很tm麻烦,细节很多。

真tm搞不懂+_+。

首先把黑白毛两种牛当做该边的边权-1或1,如果有两个点,到他们路径上某个点的距离为0,那么这就是一个合法路径。

对于一个以x为根的子树,经过x的路径\((i,j),其中deep_{i}<=deep_{j}\)有三种:

一、当i和j分别在x的两个不同的儿子为根的子树中



显然,\(k\)为中间点。

那如何计算这种情况呢?

定义\(dis_{i}\)表示x到i距离,\(d_{i}\)表示在以x为根的子树中的i的祖先是否出现过一个k点,\(dis_{k}=dis_{i}\),如果是,就为\(true\),否则为\(false\)。

我们把每个儿子分开做,这样就不用判重了。

再定义\(b_{i}\)表示,在以x为根的子树中,有多少个节点的\(dis\)值为\(i\);\(b1_{i}\)表示,在以x为根的子树中,有多少个节点的\(dis\)值为\(i\),且\(d\)值为\(true\)。

接着就可以愉愉快快地求答案了。

每个儿子用两个递归,第一个来求以x为根的子树答案,第二个来求更新\(b\)和\(b1\)。

当前递归到\(l\)点时,如果\(d_{l}=true\),那么答案加上\(b[-dis_{l}]\),否则答案加上\(b1[-dis_{l}]\)

二、i和x是同一个点



这是一种特殊情况,

显然,\(dis_{k},dis_{j}=0\),这很容易搞。

事实上,可以加点小特判,跟上一种情况一起处理,不过细节有点多,

想一想就可以解决了。

三、i不在以x为根的子树中



这种情况是不用出处理的,

因为当处理\(lca(i,j)\)时,路径\((i,j)\)会被处理掉。

//code中并没有用到d数组,可以省去
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const long long maxlongint=2147483647;
using namespace std;
long long d[200005],n,m,tot,dis[200005],next[200005],last[200005],to[200005],v[200005];
long long size[200005],mx[200005],root,f,ans,tt,N,b[200005],b1[200005],e[200005];
bool bz[200005],t[200005],g[200005];
long long bj(long long x,long long y,long long z)
{
next[++tot]=last[x];
last[x]=tot;
to[tot]=y;
v[tot]=z;
}
void getroot(long long x,long long fa)
{
mx[x]=0;
size[x]=1;
for(long long i=last[x];i;i=next[i])
{
if(to[i]!=fa && bz[to[i]])
{
getroot(to[i],x);
size[x]+=size[to[i]];
mx[x]=max(mx[x],size[to[i]]);
}
}
mx[x]=max(mx[x],f-size[x]);
if (mx[x]<mx[root]) root=x;
}
long long dg1(long long x,long long fa)
{
for(long long i=last[x];i;i=next[i])
{
long long j=to[i];
if(j!=fa && bz[j])
{
if(t[dis[j]])
{
t[dis[j]]=false;
b[dis[j]]++;
dg1(j,x);
t[dis[j]]=true;
}
else
{
b1[dis[j]]++;
b[dis[j]]++;
dg1(j,x);
}
}
}
}
long long dg(long long x,long long fa)
{
for(long long i=last[x];i;i=next[i])
{
long long j=to[i];
if(j!=fa && bz[j])
{
dis[j]=dis[x]+v[i];
if(t[dis[j]])
{
if(g[dis[j]])
{
g[dis[j]]=false;
e[++tt]=dis[j];
}
t[dis[j]]=false;
ans+=b1[2*N-dis[j]];
dg(j,x);
t[dis[j]]=true;
}
else
{
ans+=b[2*N-dis[j]];
dg(j,x);
}
}
}
}
long long solve(long long x,long long fa)
{
bz[x]=false;
b[N]=1;
tt=0;
for(long long i=last[x];i;i=next[i])
{
long long j=to[i];
if(!bz[j] || j==fa) continue;
dis[j]=v[i]+N;
if(g[dis[j]])
{
g[dis[j]]=false;
e[++tt]=dis[j];
}
t[dis[j]]=false;
ans+=b1[2*N-dis[j]];
dg(j,x);
t[N]=false;
b[dis[j]]++;
dg1(j,x);
t[N]=true;
t[dis[j]]=true;
}
for(long long i=1;i<=tt;i++)
{
g[e[i]]=true;
b[e[i]]=0;
b1[e[i]]=0;
}
b[N]=0;
for(long long i=last[x];i;i=next[i])
{
long long j=to[i];
if(j!=fa && bz[j])
{
root=0;
f=size[j];
getroot(j,x);
solve(root,x);
} } }
int main()
{
scanf("%lld",&n);
for(long long i=1;i<=n-1;i++)
{
long long x,y,z;
scanf("%lld%lld%lld",&x,&y,&z);
if(!z) z--;
bj(x,y,z);
bj(y,x,z);
}
mx[0]=maxlongint;
f=n;
N=n+1;
memset(t,true,sizeof(t));
memset(g,true,sizeof(g));
memset(bz,true,sizeof(bz));
root=0;
getroot(1,0);
ans=0;
bz[0]=false;
solve(root,0);
printf("%lld",ans);
}

【usaco 2013 open yinyang】阴阳的更多相关文章

  1. USACO翻译:USACO 2013 NOV Silver三题

    USACO 2013 NOV SILVER 一.题目概览 中文题目名称 未有的奶牛 拥挤的奶牛 弹簧牛 英文题目名称 nocow crowded pogocow 可执行文件名 nocow crowde ...

  2. USACO翻译:USACO 2013 DEC Silver三题

    USACO 2013 DEC SILVER 一.题目概览 中文题目名称 挤奶调度 农场航线 贝西洗牌 英文题目名称 msched vacation shuffle 可执行文件名 msched vaca ...

  3. USACO翻译:USACO 2013 JAN三题(1)

    USACO 2013 JAN 一.题目概览 中文题目名称 镜子 栅栏油漆 奶牛排队 英文题目名称 mirrors paint lineup 可执行文件名 mirrors paint lineup 输入 ...

  4. USACO 2013 Nov Silver Pogo-Cow

    最近因为闲的蛋疼(停课了),所以开始做一些 USACO 的银组题.被完虐啊 TAT 貌似 Pogo-Cow 这题是 2013 Nov Silver 唯一一道可说的题目? Pogo-Cow Descri ...

  5. USACO 2013 November Contest Gold 简要题解

    Problem 1. Empty Stalls 扫两遍即可. Problem 2. Line of Sight 我们发现能互相看见的一对点一定能同时看见粮仓的某一段.于是转换成有n段线段,问有多少对线 ...

  6. BZOJ3075[USACO 2013 Mar Gold 3.Necklace]——AC自动机+DP

    题目描述 给你一个长度为n的字符串A,再给你一个长度为m的字符串B,求至少在A中删去多少个字符才能使得B不是A的子串.注:该题只读入A和B,不读入长度,先读入A,再读入B.数据保证A和B中只含小写字母 ...

  7. [ USACO 2013 OPEN ] Photo

    \(\\\) Description 有一个长度为 \(n\) 的奶牛队列,奶牛颜色为黑或白. 现给出 \(m\) 个区间 \([L_i,R_i]\) ,要求:每个区间里 有且只有一只黑牛 . 问满足 ...

  8. BZOJ 4094 USACO 2013 Dec. Optimal Milking

    线段树 每个节点保存4个值,both表示左右端点都取,neither表示左右端点都不取,left表示只取左端点,right表示只取右端点. 维护的特殊姿势: $cur$的$both=max(ls.l+ ...

  9. USACO 2013 January Silver Painting the Fence /// oj23695

    题目大意: 输入n,k :n次操作 找到覆盖次数在k及以上的段的总长 一开始位置在0 左右活动范围为1-1000000000 接下来n行描述每次操作的步数和方向 Sample Input 6 22 R ...

随机推荐

  1. 【工具使用】kali 安装后要做的事情

    日期:2019-07-17 10:43:40 介绍:修改分辨率.修改时区.修改源 0x01. 修改分辨率 kali 在安装完成之后,分辨率过低,需要修改分辨率.  然后依次选择 [settings] ...

  2. 03.大型数据库应用技术课堂测试3(java.lang.NoSuchMethodError: com.google.common.base.Preconditions.checkArgument(ZLjava/lang/String;Ljava/lang/Object;)V)

    本次问题主要出在了之前没有安装hive,结构导致大部分时间花在了安装上面,主要一直报错,网上找不到相关教程.

  3. Scratch少儿编程系列:(七)太阳系八大行星的运转

    一.程序说明 本程序用来模拟太阳系八大行星的运转过程. 二.程序流程图 为了更直观的描述上述过程,采用流程图的方式将猜数字的过程进行描述. 还在制作中... 三.制作过程 1. 场景和角色的选择 场景 ...

  4. python 开启进程两种方法 multiprocessing模块 介绍

    一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu\_count\(\)查看),在python中大部分情况需要使用多进 ...

  5. C语言第十一周作业

        这个作业属于哪个课程 C语言程序设计II 这个作业要求在哪里 https://edu.cnblogs.com/campus/zswxy/computer-scienceclass3-2018/ ...

  6. mybatis中resultMap的使用

    在mybatis中,使用<select>标签,必须要设置resultType属性 或 resultMap属性 否则会报错! resultType一般是返回简单类型的查询结果,涉及一张表 可 ...

  7. SQL Server中的扩展事件学习系列

    SQL Server 扩展事件(Extented Events)从入门到进阶(1)——从SQL Trace到Extented Events SQL Server 扩展事件(Extented Event ...

  8. C++中的class和struct区别

    1,经过不停的改进,结构体 struct 变得原来越不像它在 C 语言中的样子了: 1,struct 在 C 语言中仅为了定义一个变量的集合,仅此而已,不能定义函数: 2,struct 在 C++ 中 ...

  9. 01:django基础篇

    Django其他篇 目录: 1.1 django初探 1.2 第一个django项目 1.3 django render/redirect/HttpResponse 和 request.GET req ...

  10. HNUSTOJ-1639 分糖果(几何)

    1639: 分糖果 时间限制: 1 Sec  内存限制: 128 MB提交: 261  解决: 118[提交][状态][讨论版] 题目描述 为了实验室的发展,吴大大采购了一箱零食O(∩_∩)O~~ 在 ...