链接:https://mp.weixin.qq.com/s/BEjj5zJG3QmxvQiqs8P4-w

softmax

CRF主要用于序列标注问题,可以简单理解为是给序列中的每一帧,既然是分类,很自然想到将这个序列用CNN或者RNN进行编码后,接一个全连接层用softmax激活,如下图所示

逐帧softmax并没有直接考虑输出的上下文关联

条件随机场

然而,当我们设计标签时,比如用s、b、m、e的4个标签来做字标注法的分词,目标输出序列本身会带有一些上下文关联,比如s后面就不能接m和e,等等。逐标签softmax并没有考虑这种输出层面的上下文关联,所以它意味着把这些关联放到了编码层面,希望模型能自己学到这些内容,但有时候会“强模型所难”。

而CRF则更直接一点,它将输出层面的关联分离了出来,这使得模型在学习上更为“从容”:

CRF在输出端显式地考虑了上下文关联

数学

当然,如果仅仅是引入输出的关联,还不仅仅是CRF的全部,CRF的真正精巧的地方,是它以路径为单位,考虑的是路径的概率

模型概要

假如一个输入有nn帧,每一帧的标签有kk中可能性,那么理论上就有knkn中不同的输入。我们可以将它用如下的网络图进行简单的可视化。在下图中,每个点代表一个标签的可能性,点之间的连线表示标签之间的关联,而每一种标注结果,都对应着图上的一条完整的路径。

4tag分词模型中输出网络图

而在序列标注任务中,我们的正确答案是一般是唯一的。比如“今天天气不错”,如果对应的分词结果是“今天/天气/不/错”,那么目标输出序列就是bebess,除此之外别的路径都不符合要求。换言之,在序列标注任务中,我们的研究的基本单位应该是路径,我们要做的事情,是从kn条路径选出正确的一条,那就意味着,如果将它视为一个分类问题,那么将是kn类中选一类的分类问题!

这就是逐帧softmax和CRF的根本不同了:kn分类问题。

具体来讲,在CRF的序列标注问题中,我们要计算的是条件概率

为了得到这个概率的估计,CRF做了两个假设:

假设一 该分布是指数族分布。

这个假设意味着存在函数f(y1,…,yn;x),使得

其中Z(x)是归一化因子,因为这个是条件分布,所以归一化因子跟x有关。这个f函数可以视为一个打分函数,打分函数取指数并归一化后就得到概率分布。

假设二 输出之间的关联仅发生在相邻位置,并且关联是指数加性的

这个假设意味着f(y1,…,yn;x)可以更进一步简化为

这也就是说,现在我们只需要对每一个标签和每一个相邻标签对分别打分,然后将所有打分结果求和得到总分。

线性链CRF

管已经做了大量简化,但一般来说,上式所表示的概率模型还是过于复杂,难以求解。于是考虑到当前深度学习模型中,RNN或者层叠CNN等模型已经能够比较充分捕捉各个y与输出x的联系,因此,我们不妨考虑函数gx无关,那么

这时候g实际上就是一个有限的、待训练的参数矩阵而已,而单标签的打分函数h(yi;x)我们可以通过RNN或者CNN来建模。因此,该模型是可以建立的,其中概率分布变为

这就是线性链CRF的概念。

归一化因子

为了训练CRF模型,我们用最大似然方法,也就是用

作为损失函数,可以算出它等于

其中第一项是原来概率式的分子的对数,它目标的序列的打分,虽然它看上去挺迂回的,但是并不难计算。真正的难度在于分母的对数logZ(x)这一项。

归一化因子,在物理上也叫配分函数,在这里它需要我们对所有可能的路径的打分进行指数求和,而我们前面已经说到,这样的路径数是指数量级的(kn),因此直接来算几乎是不可能的。

事实上,归一化因子难算,几乎是所有概率图模型的公共难题。幸运的是,在CRF模型中,由于我们只考虑了临近标签的联系(马尔可夫假设),因此我们可以递归地算出归一化因子,这使得原来是指数级的计算量降低为线性级别。具体来说,我们将计算到时刻t的归一化因子记为Zt,并将它分为k个部分

其中分别是截止到当前时刻t中、以标签1,…,k为终点的所有路径的得分指数和。那么,我们可以递归(DP)地计算

它可以简单写为矩阵形式

的各个标签的打分的指数,即H(yt+1|x)=eh(yt+1|x),也是一个向量。ZtG这一步是矩阵乘法,得到一个向量,而⊗是两个向量的逐位对应相乘

归一化因子的递归计算图示。从tt+1时刻的计算,包括转移概率和j+1节点本身的概率

动态规划

写出损失函数−logP(y1,…,yn|x)后,就可以完成模型的训练了。假设现在有一句用于测试的句子,根据训练好的模型,我们可以算出每个时刻t对应的h值,以及CRF对应的转移概率。下面就可以进行前向动态规划求最大概率,并保存转移状态。 令dp[t][y]: 表示t时刻标签为y的路径的最大概率,那么dp[t][y]=max dp[t-1][y'], y'=1,2,3,4。pre[t][y]: 表示从上一部转移过来的最优标签y'

条件随机场CRF介绍的更多相关文章

  1. 条件随机场(CRF) - 2 - 定义和形式(转载)

    转载自:http://www.68idc.cn/help/jiabenmake/qita/20160530618218.html 参考书本: <2012.李航.统计学习方法.pdf> 书上 ...

  2. 条件随机场(CRF) - 1 - 简介(转载)

    转载自:http://www.68idc.cn/help/jiabenmake/qita/20160530618222.html 首先我们先弄懂什么是"条件随机场",然后再探索其详 ...

  3. 条件随机场CRF(三) 模型学习与维特比算法解码

    条件随机场CRF(一)从随机场到线性链条件随机场 条件随机场CRF(二) 前向后向算法评估标记序列概率 条件随机场CRF(三) 模型学习与维特比算法解码 在CRF系列的前两篇,我们总结了CRF的模型基 ...

  4. 条件随机场(CRF) - 1 - 简介

    声明: 1,本篇为个人对<2012.李航.统计学习方法.pdf>的学习总结,不得用作商用,欢迎转载,但请注明出处(即:本帖地址). 2,由于本人在学习初始时有很多数学知识都已忘记,所以为了 ...

  5. 条件随机场(CRF) - 2 - 定义和形式

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/xueyingxue001/article/details/51498968声明: 1,本篇为个人对& ...

  6. 条件随机场CRF(一)从随机场到线性链条件随机场

    条件随机场CRF(一)从随机场到线性链条件随机场 条件随机场CRF(二) 前向后向算法评估观察序列概率(TODO) 条件随机场CRF(三) 模型学习与维特比算法解码(TODO) 条件随机场(Condi ...

  7. 条件随机场CRF(二) 前向后向算法评估标记序列概率

    条件随机场CRF(一)从随机场到线性链条件随机场 条件随机场CRF(二) 前向后向算法评估标记序列概率 条件随机场CRF(三) 模型学习与维特比算法解码 在条件随机场CRF(一)中我们总结了CRF的模 ...

  8. 条件随机场 (CRF) 分词序列谈之一(转)

    http://langiner.blog.51cto.com/1989264/379166 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.ht ...

  9. 条件随机场CRF

    条件随机场(CRF)是给定一组输入随机变量X的条件下另一组输出随机变量Y的条件概率分布模型,其特点是假设输出随机变量构成马尔科夫随机场.实际上是定义在时序数据上的对数线性模型.条件随机场属于判别模型. ...

随机推荐

  1. Radio 单选框

    Radio 单选框 在一组备选项中进行单选 ¶基础用法 由于选项默认可见,不宜过多,若选项过多,建议使用 Select 选择器. 要使用 Radio 组件,只需要设置v-model绑定变量,选中意味着 ...

  2. GIS开源程序收集

    每一个项目包含以下信息: 名称 主题 分类 描述 开始时间 语言 许可 演示网址 项目网址 成熟度 活跃度 评价   分类包括:GIS基础函数库.GIS控件.GIS桌面程序.GIS数据引擎.WEBGI ...

  3. 四十八:数据库之alembic常用命令和经典错误的解决办法

    常用命令:1.init:创建一个alembic仓库2.reversion:创建一个新的版本3.--autogenerate:自动将当前模型的修改,生成迁移脚本4.-m:message,可以记录本次迁移 ...

  4. harbor无法登陆解决

    添加如下内容 [root@bogon ~]# vi /etc/docker/daemon.json { "registry-mirrors": ["https://wb2 ...

  5. HashMap根据value值排序

    )))); Set<Map.Entry<String, Integer>> entrySet = map.entrySet(); for (Map.Entry s : entr ...

  6. Redis 入门 3.2.4 命令拾遗

    Redis 入门 3.2 字符串类型 3.2.4 命令拾遗 1. 增加指定的整数 INCRBY key increment   INCRBY命令与INCR命令基本一样,只不过前者可以通过increme ...

  7. LeetCode.1051-身高检查器(Height Checker)

    这是小川的第390次更新,第420篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第252题(顺位题号是1051).要求学生按身高递增的顺序站列来拍年度照片. 返回没有站在 ...

  8. [Vuejs] 点击单选框触发两次点击事件的处理

    <el-radio-group v-model="uploadStatus" class="upload-status-radio"> <el ...

  9. jenkins自动化部署工具

    jenkins自动化测试 & 持续集成 知识点: 1.下载地址:jenkins.io download:

  10. vue --- vscode 配置 .vue文件生成结构

    1.选择“文件 -> 首选项 -> 用户代码片段”,此时,会弹出一个搜索框,输入vue      选择vue后,编辑器会自动打开一个名字为vue.json的文件 2.复制以下内容到这个文件 ...