Notes on Efficient Graph-Based Image Segmentation

算法的目标

按照一种确定的标准, 将图片分割成细粒度的语义区域, 即Super pixel.

算法步骤

  • 预处理. 将图片转换为undirected graph: \(G(V, E)\):

    • 每一个像素都是一个顶点.
    • 只有相邻像素间才存在边
    • 边的权重为它连接的两个顶点间的像素距离作者的代码使用了欧氏距离
  • Steps:
  1. 将\(E\)按权重递增排序: \(\pi = (e_1, e_2, \dots, e_m)\)
  2. \(S^0 = V\), 即一开始每个顶点都一个单独的region.
  3. 重复4直到处理完所有的边得到\(S^1, S^2, \dots, S^{m - 1}, S^m\):
  4. \(S^q\)由\(S^{q - 1}\)得到:
    • \(e_q = <v_i, v_j>\)
    • 如果: (1) \(v_i, v_j\)不在\(S^{q - 1}\)的同一个连通区域内, 即:\(C_i^{q -1} \neq C_j^{q - 1}\), 且(2)\(e_q\)的权重比两个component内部的像素差异要小, 即:\(w(e_q) < MInt(C_i^{q -1}, C_j^{q - 1})\), 则将\(C_i^{q -1}, C_j^{q - 1}\)在\(S^{q-1}\)内合并.
    • \(S^q = S^{q - 1}\)
  5. Return \(S^m\)

从之前的构图, 到后面的merge, 都是很常规的做法. 算法的关键在于\(MInt(C_i, C_i)\)函数上, 即如何决定是否合并两个相邻像素/相邻区域.

注意, region/区域与component/连通分量在此处含义相同, 可交换使用

Pairwise Region Comparison

具体参考原文Section 3.1

在考虑是否要将两个region合并成一个region时, 需要考虑internal-region的像素差异程度与inter-region的像素差异.

region内部的差异定义为这个region的最小生成树的最大权重:

\[
Int(C) = \max_{e\in MST(C, E)}w(e)
\]

region间的差异定义为连接两个region的最小边的权重:

\[
Dif(C_1, C_2) = \min_{v_i \in C_1, v_j \in C2, <v_i, v_j> \in E} w(<v_i, v_j>)
\]

这个值在上面的算法中为\(w(e_q)\).

\[
MInt(C_1, C_2) = min(Int(C_1) + \tau(C_1), Int(C_2) + \tau(C_2))
\]

其中, \(\tau(C) = \frac {k}{|C|}\). \(k\)是一个指定的常数. \(|C|\)是region的面积(包含的像素个数).

\(Dif(C_1, C_2) < MInt(C_1, C_2)\)是合并\(C_1, C_2\)的前提条件. 之所以加入\(\tau(C)\), 是为了降低小region合并的门槛.

需要设定的参数

  • \(\sigma\): 在分割图片之前需要对其进行高斯平滑操作, 使用期望为0, 方差为\(\sigma^2\)的高斯分布.
  • \(k\): \(\tau = \frac {k}{|C|}\) 里的\(k\), \(k\)越大, 最后分割出的region也偏大
  • \(min_area\): 在初次分割完之后, 会有很多小region, \(min_area\)用于判断小region, 然后将小region合并

Notes on 'Efficient Graph-Based Image Segmentation'的更多相关文章

  1. VIPS: a VIsion based Page Segmentation Algorithm

    VIPS: a VIsion based Page Segmentation Algorithm VIPS: a VIsion based Page Segmentation Algorithm In ...

  2. Graph Based SLAM 基本原理

    作者 | Alex 01 引言 SLAM 基本框架大致分为两大类:基于概率的方法如 EKF, UKF, particle filters 和基于图的方法 .基于图的方法本质上是种优化方法,一个以最小化 ...

  3. 论文解读(GCC)《Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering》

    论文信息 论文标题:Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering论文作者:Chaki ...

  4. 论文阅读笔记五十二:CornerNet-Lite: Efficient Keypoint Based Object Detection(CVPR2019)

    论文原址:https://arxiv.org/pdf/1904.08900.pdf github:https://github.com/princeton-vl/CornerNet-Lite 摘要 基 ...

  5. 论文阅读-Temporal Phenotyping from Longitudinal Electronic Health Records: A Graph Based Framework

  6. Awesome Deep Vision

    Awesome Deep Vision  A curated list of deep learning resources for computer vision, inspired by awes ...

  7. Computer Vision Tutorials from Conferences (3) -- CVPR

    CVPR 2013 (http://www.pamitc.org/cvpr13/tutorials.php) Foundations of Spatial SpectroscopyJames Cogg ...

  8. PP: Extracting statisticla graph features for accurate and efficient time series classification

    Problem: TSC, time series classification; Traditional TSC: find global similarities or local pattern ...

  9. Survey of single-target visual tracking methods based on online learning 翻译

    基于在线学习的单目标跟踪算法调研 摘要 视觉跟踪在计算机视觉和机器人学领域是一个流行和有挑战的话题.由于多种场景下出现的目标外貌和复杂环境变量的改变,先进的跟踪框架就有必要采用在线学习的原理.本论文简 ...

随机推荐

  1. VS设置程序集属性(文件的详细信息)

    适用范围 本文方法适用于:C#创建的控制台程序,WinForm,WPF等VS创建的.Net工程信息设置. 方法步骤 1.在 项目 上点击鼠标右键选择 属性 ,进入这个页面,点击 程序集信息(重点关注 ...

  2. Java面向对象:接口

    Java面向对象之接口 什么是接口:接口是一种规范和标准,他们可以约束类的行为,是一些方法特征的集合 语法: [修饰符] interface 接口名 extends 父接口1,夫接口2....... ...

  3. 在ubunt14.04(linux)下利用cmake编译运行opencv程序

    今天在电脑上安装好了opencv环境,迫不及待的想写个程序来测试一下.但是在windows下我们用vs等集成开发工具.可是在linux下我们应该怎么办呢? 这里我们用了opencv推荐的cmake来编 ...

  4. 适配ipone5

    PROJECT和TARGETS都需要设置

  5. Jquery操作下拉框(DropDownList)实现取值赋值

    Jquery操作下拉框(DropDownList)想必大家都有所接触吧,下面与大家分享下对DropDownList进行取值赋值的实现代码 1. 获取选中项: 获取选中项的Value值: $('sele ...

  6. java中wait/notify机制

    通常,多线程之间需要协调工作.例如,浏览器的一个显示图片的线程displayThread想要执行显示图片的任务,必须等待下载线程 downloadThread将该图片下载完毕.如果图片还没有下载完,d ...

  7. linux numfmt 命令--转换数字

    numfmt SYNOPSIS numfmt [OPTION]... [NUMBER]... DESCRIPTION Reformat NUMBER(s), or the numbers from s ...

  8. Android-完全退出当前应用程序的四种方法

    Android程序有很多Activity,比如说主窗口A,调用了子窗口B,如果在B中直接finish(), 接下里显示的是A.在B中如何关闭整个Android应用程序呢?本人总结了几种比较简单的实现方 ...

  9. css一些记录

    比如右侧链接:更多   ,定义此span float:right ,但是 更多 要写在 短标题的左边  比如:<span>更多</span> <font>这是短标题 ...

  10. 使Eclipse符合Java编程规范

    编程规范是很重要的东西,能让团队的代码易于阅读和维护,也便于日后的功能扩展. 工欲善其事必先利其器!作为一个Java程序员,与Eclipse打交道可能是一辈子的事情.将Eclipse设置为符合公司编程 ...