poj 3463 最短路与次短路的方案数求解
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 8968 | Accepted: 3139 |
Description
Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.
Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.
There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.
Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.
M lines, each with three integers A, B and L, separated by single spaces, with 1 ≤ A, B ≤ N, A ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.
The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.
One line with two integers S and F, separated by a single space, with 1 ≤ S, F ≤ N and S ≠ F: the starting city and the final city of the route.
There will be at least one route from S to F.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.
Sample Input
2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1
Sample Output
3
2
Hint
The first test case above corresponds to the picture in the problem description.
Source
/******************************
code by drizzle
blog: www.cnblogs.com/hsd-/
^ ^ ^ ^
O O
******************************/
//#include<bits/stdc++.h>
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<bitset>
#include<math.h>
#include<vector>
#include<string>
#include<stdio.h>
#include<cstring>
#include<iostream>
#include<algorithm>
//#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
#define A first
#define B second
const int mod=;
const int MOD1=;
const int MOD2=;
const double EPS=0.00000001;
typedef __int64 ll;
const ll M22OD=;
const int INF=;
const ll MAX=1ll<<;
const double eps=1e-;
const double inf=~0u>>;
const double pi=acos(-1.0);
typedef double db;
typedef unsigned int uint;
typedef unsigned long long ull;
struct node
{
int v,next,w;
}edge[];
int d[][],e,n,m;
int cnt[][];
int head[];
bool vis[][];
void init()
{
e=;
memset(head,,sizeof(head));
}
void insert(int x,int y,int w)
{
e++;
edge[e].v=y;
edge[e].w=w;
edge[e].next=head[x];
head[x]=e;
}
int dijkstra(int s,int t)
{
int flag,u;
memset(vis,,sizeof(vis));
memset(cnt,,sizeof(cnt));
for(int i=;i<=n;i++){
d[i][]=d[i][]=INF;
}
cnt[s][]=;
d[s][]=;
for(int i=;i<=*n;i++)
{
int mini=INF;
for(int j=;j<=n;j++)
{
if(!vis[j][]&&d[j][]<mini)
{
u=j;
flag=;
mini=d[j][];
}
else if(!vis[j][]&&d[j][]<mini)
{
u=j;
flag=;
mini=d[j][];
}
}
if(mini==INF) break;
vis[u][flag]=;
for(int j=head[u];j;j=edge[j].next)
{
int w=edge[j].w;
int v=edge[j].v;
if(d[v][]>mini+w){
d[v][]=d[v][];
cnt[v][]=cnt[v][];
d[v][]=mini+w;
cnt[v][]=cnt[u][flag];
}
else if(d[v][]==mini+w) cnt[v][]+=cnt[u][flag];
else if(d[v][]>mini+w){
d[v][]=mini+w;
cnt[v][]=cnt[u][flag];
}
else if(d[v][]==mini+w) cnt[v][]+=cnt[u][flag];
}
}
int ans=;
if(d[t][]==d[t][]+) ans=cnt[t][]+cnt[t][];
else ans=cnt[t][];
return ans;
}
int main()
{
int s,t, T,x,y,w;
scanf("%d",&T);
while(T--)
{
init();
scanf("%d %d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d %d %d",&x,&y,&w);
insert(x,y,w);
}
scanf("%d %d",&s,&t);
printf("%d\n",dijkstra(s,t));
}
return ;
}
poj 3463 最短路与次短路的方案数求解的更多相关文章
- poj 3463/hdu 1688 求次短路和最短路个数
http://poj.org/problem?id=3463 http://acm.hdu.edu.cn/showproblem.php?pid=1688 求出最短路的条数比最短路大1的次短路的条数和 ...
- poj 3463 Sightseeing( 最短路与次短路)
http://poj.org/problem?id=3463 Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissio ...
- poj 3463 Sightseeing——次短路计数
题目:http://poj.org/problem?id=3463 当然要给一个点记最短路和次短路的长度和方案. 但往优先队列里放的结构体和vis竟然也要区分0/1,就像把一个点拆成两个点了一样. 不 ...
- POJ - 3463 Sightseeing 最短路计数+次短路计数
F - Sightseeing 传送门: POJ - 3463 分析 一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数. ...
- POJ 3463 有向图求次短路的长度及其方法数
题目大意: 希望求出走出最短路的方法总数,如果次短路只比最短路小1,那也是可取的 输出总的方法数 这里n个点,每个点有最短和次短两种长度 这里采取的是dijkstra的思想,相当于我们可以不断找到更新 ...
- poj 3463 Sightseeing(次短路+条数统计)
/* 对dij的再一次理解 每个点依旧永久标记 只不过这里多搞一维 0 1 表示最短路还是次短路 然后更新次数相当于原来的两倍 更新的时候搞一下就好了 */ #include<iostream& ...
- poj 3463 最短路+次短路
独立写查错不能,就是维护一个次短路的dist 题意:给定一个有向图,问从起点到终点,最短路+比最短路距离长1的路的个数. Sample Input25 81 2 31 3 21 4 52 3 12 5 ...
- poj 3463 次短路
题意:给定一个有向图,问从起点到终点,最短路+比最短路距离长1的路的个数. 当年数据结构课程设计用A*做过,现在忘光了,2333 #include<stdio.h> #include< ...
- POJ 3463 Sightseeing (次短路)
题意:求两点之间最短路的数目加上比最短路长度大1的路径数目 分析:可以转化为求最短路和次短路的问题,如果次短路比最短路大1,那么结果就是最短路数目加上次短路数目,否则就不加. 求解次短路的过程也是基于 ...
随机推荐
- bootloader(转)
本文详细地介绍了基于嵌入式系统中的 OS 启动加载程序 ―― Boot Loader 的概念.软件设计的主要任务以及结构框架等内容. 1. 引言在专用的嵌入式板子运行 GNU/Linux 系统已经变得 ...
- Python_Day3_基础3
python基础之数据类型与变量 字典 字典一种key - value 的数据类型,使用就像我们上学用的字典,通过笔划.字母来查对应页的详细内容. 语法: info = { 'stu1101': &q ...
- Github上传代码菜鸟超详细教程【转】
最近需要将课设代码上传到Github上,之前只是用来fork别人的代码. 这篇文章写得是windows下的使用方法. 第一步:创建Github新账户 第二步:新建仓库 第三部:填写名称,简介(可选), ...
- C关键字
1 extern可以置于变量或者函数前,以标示变量或者函数的定义在别的文件中,提示编译器遇到此变量和函数时在其他模块中寻找其定义
- 项目二(业务GO)——跨域上传图片(请求接口)
之前,就听过“跨域上传”图片的问题,只是疏于研究,也就一再搁置,直至今天再次遇见这个不能避免的“坑”,才不得不思考一下,怎么“跨域上传”图片或者文件? 问题来源: 何为“跨域”? ——就是给你一个接口 ...
- 【小月博客】用HTML5的File API做上传图片预览功能
前段时间做了一个项目,涉及到上传本地图片以及预览的功能,正好之前了解过 html5(点击查看更多关于web前端的有关资源) 可以上传本地图片,然后再网上看了一些demo结合自己的需求,终于搞定了.(P ...
- 【转载】 ionic 的 下拉刷新 与 上拉加载
这篇文章是讲解 Ioinc中怎么实现 下拉刷新和上拉加载的.也是我们日常做项目是必不可少的功能.有兴趣的小伙伴可以来学习一下. 更多关于 IONIC 的资源: http://www.aliyue.ne ...
- iOS开发UI篇—Quartz2D使用(绘图路径)
iOS开发UI篇—Quartz2D使用(绘图路径) 一.绘图路径 A.简单说明 在画线的时候,方法的内部默认创建一个path.它把路径都放到了path里面去. 1.创建路径 cgmutablepat ...
- HTTP 错误 500.23 - Internal Server Error 解决方法
分析原因:在安装完成后IIS已经支持ASP和ASP.NET 2.0,需要注意的是.NET站点的应用程序池应选用Classic .NET AppPool,而不能用默认的DefaultAppPool,否则 ...
- [最近公共祖先] POJ 3728 The merchant
The merchant Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 4556 Accepted: 1576 Desc ...