aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAscAAAMaCAIAAADlQ3w8AAAgAElEQVR4nO3dO3LbvN4H4G8T7r2Q1FpIMmrSZQVp2DhV+jSZ0QpSOJNW/VtkJk3SqUt5lqCvEC8ACJCQDMuXPM9kznktUxQvMvHjHyD5f0cAgBb+76kXAAB4JaQKAKANqQIAaEOqAADakCoAgDakCgCgDakCAGhDqgAA2pAqAIA2pAoAoA2pAgBoQ6oAANqQKgCANqQKAKANqQIAaEOqgNb+fLq7ffczeOHv5zcfbm/uPv8+Ho/H4+8fm/G/n879uw+3Nx9u3/z4c977TuuSvvHPp7vbmw/xWgP/IKkCmurb15sP778NL/3+sZle+fn+ptScD79a+zfN+fJ3DeEgyAHjks/+BRloWJfNp7+5Zfh6v7Bpvn1N5/ywFJLZ1MATkyqgsfRsvm/8xhjRN8zzcsUTpIowHFSlij4ZRAs/vjGOGjULuZhC1kgV8PxIFdBcdEI/hIziv7Fl7ZveYtsc1TxG576r0MDPaydjaeH0q3mloV/41Rku5B6pAl4ZqQIewf27oanLN8ZLqeKRaxV1qWLIIlNZopAq3r8rfOIww/tggjj6/P38RqqAV0aqgEc0NeFDy5fpekgmfuRaxfEYd8r0rX40xGG+2GOq6HPArLtkygfRONApnay2/WlRJzN9PLd8qgimiXtqxvl/vc9vSeDhpApoKagEvPlxHzS99anikWsVx2OcJDKpYihLRAuZTxVf74/HP5/uMjN/8+NPGD6WB2aWKjq5pRoTw/t3aarIDg1JtvxKcAEeRKqAlsJU8fX9yoiKpOvhslRxgTDZ5FJObkjmQqo4Hn++L9QqKgZyrqz48MalafoNMlYp+k2aDJsNUsXZ19MClaQKaG3qX/j94/2nnyujNS9v4WpTyKwB7t8Y/fensOMg17SXUsXsWtNMIWQ5VUxFiCmaTFWHdKzoOM2UEk6pYnhL6YqVcfqnv1kIvF5SBbQWX0raN2aLPSCX5YNLU0V4aevY7n6rTBXJv6/3U3To2/swVdT0gBQGXUb3wMhPMyzS6cX70rjRfoJgXEWDnQxkSRXQ2rVSxfE4NKVJnWCxuyFqodN7aZws9YBkUkVya6xooMb0rmKF4OJUkbwoVcAzIFVAa9lUUfwXtui/f2zKl11kZZvSzacf+ZgyFAySd6Up5OxxFVGDHQ//jALTLDdEiSHfA5LUPHLDUIo9IBGpAq5AqoDWplTx7cfn32ekiripXrjXRTo0clarWEkVx6gtnzXDZ6eK8LKRn+m9wJfu2DEO9lwpycTXi65NEwa1b1+HjSNVwBVIFdDan+iC0poekJPZI0KqU8WsVvE3rpeEwzMzC5kOerggVUyXgZz1hJG1/BTMZLamXz/PukVKWyPc8lIFPCapAlqLS/q1qSLTzFf3gOTGVaQ1kugT56f+mTtDnJUqRplUEb0+/UtqJEnFItORkfSVLA/hvE3rFlIFXIFUAa0NZ8zJBY2lf3eff4fV+7vpVtmfllPF0pznwWL+DNX4Co75GX/8uQujNUP5h5oC/wipAhrLFycWU8V4mh4njLUssnDVQ+nf2CMTFgPu34VXmc7P8o/H43KqmA+McE8I+DdJFdDc7x/vpzP1JGQUTQ8kOx6PS2MRck1+MJPbcFzF0A0R//j385tcqx+lmVkRYrEHJMk37oQN/yqpAgBoQ6oAANqQKgCANqQKAKANqQIAaEOqAADakCoAgDakCgCgDakCAGhDquCF2Heb7e4w/njYbYef990mZ7s7nCYbdfvox/HVcJ7d/njYbcNPCpdgmvYfcMn6lrZdOuOFiewyeMmkCp6NOB2krUSmKVponYZmpm91hhfGH4NZjD8Pv0ybqGGaBzRR9+/mT9sqPULz3NcfzWOlitlOKPz6KXdZcPPy4e7js2edxE+ZT19PHuYyPcG1NJ94FcPl3nf930Oan9cDHFydVMGzEYSEtQix2lqkqaJ/w9KJb+53w7H88iZqfEBGnCp+vo+bq0v/+zFVrW+hUJS2fNmNm5/6yXfZn093uaejlTZ74fVvX4M9/vP99AWo2H1hqth30wrHaWPfyRU8Q1IFz0aaKnblno2xtZi3K+PrQaoYT2UXTnynTz/3xPew264c3v9+fhOnim9fwzPUP5/u+nPZc19PNt+m243b49QvkDTDUQhYa29rU0W46vN+qjMKTON7nnKX/f6xOSs91IW8+3djueKcVHHYbdMcEff+6ODh2ZEqeDYuqVUkzcns9cNue2pqpxBSKqcfDv18Hj9VBG3M8Xg8PQ706/35r0fGOvmwSNEPwxoE5/ndynnuBaki3b6zVHGaYGkkzBPvsj+f7grPg31Aqvj2NSh+1KeKWTEiShXByCJ4RqQKno3ZuIqoQSmmiopaxXo5vVyh3+52Dx5XcbVUEdUkZu3Pme3Q+akiCjP9C+kQ28ws47c97S67f/fh9s1d7onw8XiI0jiJuIbUPy8+iilL008bdbPdzisRaRpTqOAZkip4NjK1iqAZekCtYmpf+h+jxmbW8rQfrflMUsXUEFdli3NTRf8xYR0g2pTZAkE4bGCa7Ol22f27KAQkPw5+vs8HgsLrv39s0oE1i9Ofyk7bbbpp9IDwAkgVPBv5HpCggXhgqohHAk7NbH9gzp/7Bg3ay08V8XquRYtzUsVppvHwjfiKz3232W635eEy4zI97S5LN/XvH5vMyM1iR0mb14e9l+aw5NqQ2c/wDEgVPBsXjqvIVcejVBH8Yqp99MXk3JiAdKBg+1TxeKM1K1JF+bX5DOuvAZnNaxgecfrFaV5ru3V849PtsrSZj4ZElCdbe71Q81hJFcckrSUpQrGC50iq4NmYjatIf7teqxjNahXjy2OffZec6BWbqGAJWl0D8hhXltaMq+jCLbjWIF1yDUhiXkqqSxVPucvCq0D/fn7Tly7+fLqb9mDQo1F6/f5dsI+C60pK06cbJan7jNksuSJEqODZkSp4Ni6pVazNK9NEBZElOi7HTVRfp880bzOLqWK8X0V8S6XwV2lfxrmvT6u8VqsIc1vVLTCfSaq47i6LBlSONaFvX/P7sdXryUaZb4Lt7pCM1nQFCM+RVMHzFhxI4w7mbGsxm3p+7prrCpgNF4wmytz24Z/wgFQx7Yd0EGU4tDPfNtpl8JJJFUDW5eNIgH+WVAFkSRXA2aQKAKANqQIAaEOqAADakCoAgDakCgCgDakCAGhDqgAA2pAq4F/S36qy4l4UHjMBnE+qgNcrfHBE8jz5+ePFkqdMZJ2fMv5+frP4+BLgVZEq4B/Q1ybywWHKGX1oSJ69cflNNisetQq8KlIFvF77bnzI2vDIyz4fZB4hPzxrfEHuKZkLz//89vX2zY8/w09/Pt1NjwAFXiepAl6xPjz0gSEfGoLHz19Sqyinivt3H6IY8e2rfhB47aQKeNWmQNHtg3xQqFWMqeLB4ymOUgX8i6QKeN3CWkJlqmhEqoB/j1QBr1xwtUd2tGafLg677abbly8EOT9xSBXw75Eq4HU75YRTdFiqVUQXnUa/23el4ZgrjNaEf45UAa/ZKSGc6hCLqSKOEofddrPdHZYu8AgnLU3iylL410gV8HoNaSK6tjTbuZHUJw67bW3Xx1rwuH/nLljw75Aq4NWajb8sDsg8/WIKHcmFpQ+7FgT4d0gVAEAbUgUA0IZUAQC0IVUAAG1IFQBAG1IFANCGVAEAtCFVAABtSBUAQBtSBQDQhlQBALQhVQAAbUgVAEAbUgUA0IZUAQC0IVUAAG1IFQBAG1IFANCGVAEAtCFVAABtSBUAQBtSBQDQhlQBALQhVQAAbdSkim9fb28+3L77Ofz88/3Nh9ubr/fpf/f+fLoLJp7P5Of7eHoA4FVonipOE998eP8tP5P7dx9ubz7c3tx9/t1mDQCA5+GsVPH7x+bmlAny/05J4s+nu9tZASOMJn8+3UkVAPDqrKSKUyli+Pfmx5/pxWIPyPH49/ObD++//f3z6etCBBnmBgC8Do8wriJnSCfz8RYAwCtxSapYENQ2gumHPpHTuAp9HwDwKp2XKv5+flPRo5GrbWze3AUTuwYEAF6fS1LFqdgQ9H2cRnEWUsX9uw+3N1/vk2tADKoAgNemPlXcfLh98/X9uali/O9ZwWPz6e+jrRUAcH3LqSK8lPSCWkX/9q/3xzhqDLNN72kBALxgjziu4utp5GZfk4i7Rf58ulOrAIDX5XHHVfx8XxzCCQC8Mo8/WnM2EwDgVWqfKoJeEhkCAP4hFanidA+rzae/NeMq7t+NsWNxYqM1AeC1WUkVYzI43bcqrFUEplrF3/t3d7ICAPyTanpAAADWSRUAQBtSBQDQhlQBALQhVQAAbUgVAEAbUgUA0IZUAQC0IVUAAG1IFQBAG1IFANCGVAEAtLGaKvbddneYvXrYbTfdPvuGw2672Ww28bsOu+34wr7bBE5z2Xebbddtw1/MP3bfZV7ML1j8GdFH5Za2sCoPtu8eb97HzF4obqHaKYOXM5twfMfC7k8+NZwq2hqH3ba4bZY3W/8FK0s/c2261Rkm09fMc749xxdWN9xht819/fMT1ny91v5wFjdA/85omu3ukH9T8DHzhav5+z3DI/9xAZdZr1Ucdtv5wWB+yJgOMtPr0yE0TBW5GUwHnPKhp+KgNB5oZgfv3AG4eDCdNQRLDUfV8jTWr15FVqidMt0W290u2YTBLpyv1qyhTfbmUkM8BctFddsxXdHil2a5eV/KPPXzLH3plr7G/SdXtsD7riZ/1KSK/Mrm3tl/EWZ/0vHE2VDR9G9BqoBnqaoHZH48KB6HkkmHo145VZz+I58qzjqJjA7Xa7WKfbcpVEMyp7pp81t/wnWlVJFvkMN4VTFlv3LrtYrZXtnuDnHrk1Sm6s5Yl5q+2pPybKpY/tpkLe+32nkGa1QZYKOlz0bECvMFX2vPa2oV0dQrqSKd3/ANXJ7vuaQKeJYuHFdRmyqGVypSRf+2cml+8Qgy/v70SUu1iun8LpwqlzOWzwTDY3z4YcnxM/6E6IB6WtfT62cdH+dZYepIGo/rhVRRmjJcwu3ukDvxHssOs/JHOVUUtkp28zxOqji7VrHWXNXNM9oI+Sw6O7lPpylW9ErC/b4mWtSKWkUwy5UekGhth7//9G+kcO4Q/JE+0R8X8CDLqSLq1lg6UG13u+S3264rHFXjHtrTZMupYuFcah5h4tYznEXu2DKuVOaXS6Ei+l1QL49L51P7FLZUYT/NZYe8R0kV+27Tdd1muzscdtv5Dt0sFW2yqWLYtkN6zNaGMu1C1Z4ueHiton/HQvNdM89os1b13J2x7tEs1zsWMt/94aXaauBmu9sPOzDdk/O/2NlXY5sGpkMws7hWNlTUnu6PC3iQmlrFwlEpFZ3mxceDcq1iSBXxsTU8PheODoXuluN6D8h0PN3uDsMP82Nj6ag0O68cXkhOc8NDXDB9kH0uqwM/QqoYT+2Cc71irWLW5OxWe0Aa1irWmsIHtCT9fpzOcy+cV7CIS9/IzFcmKzPN+O2sShXplo02dlKQKA9rCj6nuA/6b1tSq0jfP3xMbuWf+o8LeJCmqWI61AT9yUOzXUgV++50HpSvVYz9I6stSHyKeTqEBUsZnztuokJp4XC/kCrmB8PTK+kBMewtyCz4M0oV/aU+carIbZX5HszutVyqWK1V1KeKiinPGpQzLkLSTiWR9rx5HnZd7d6tH9mwzwz9WUkVmSnSVBF9XHIx1mY+4Dbq0pgn0dy4imMUF4IJZ7vyqf+4gAdpmSr6EnrcnI/TL4xLSw5MsxapdOCM+k1OHxsftYK5zQrRUX0+eXmtdn3JgW+tX/0c00F5OOCvp4q1KdMlKtUqwnXbZFqWYzFVLDTAx2l/lNSlirXNtjxMJvcl7JdsoSss+6tgfU/fi7z+vXUjG3LLuv4dyk2RLRxM/x1s4fnG3icDJbKpYl6riObWOlW0/OMCHqRdqhirxrlmevkwGv5QOAautzXHYyZVZMND1N8RH0A3s3PXYqwoFWlzB75CmfuBqSKNDnFWOP1H/ZRBV3vFQp2mjitOz6FWMUwddcsH36381yctS82X5dx5lr862QBRlSouqL4UvnmzKDn7C+0/tvinf34PSLpW5b+LJ/7jAh7krFQx3RFrfrSZSuhJVTLfpowTdPtZOXb5zGrh9VmqOOy2m263cgHBtKzZQ1N+kGLUagSNUniEC1NKXLjua+MrB7780TJa7nHmU1YY6tdJjFqbcpwmWMGwhdmlp+9TFtnWXFnadlzFaqoIG/21QQPzl5d3TM08y28au5zOvwoj1W/T8nck/tZFb8ztzOi/SzOfbf3xLeMqraaKpJ8qDDh950X7P65CbRJorDZVJH+RxaNgIQAk7UzYUiezOiNVLPSzDIeQ8AiZOTgPa7bYLuSLLfHrs0rIacpdFzebyUyWW6RySzPMLbehFsvl5SmnTZwLgHE1I57hIXvByLSCXbdwQ6lkMZfUNMHjr6dmbtN14/et+vR1YcJz5jl+vbbbuDmcWtS4Cc+bzz/+3o5bblakWCiXLH9wMJYpncVsheMdN1Q48rsuN49o6qAvJff2i/+4gu+uCgY8qopUkZaHh9cuTRWFX8yOb8XTnbQQMp9ZriEdVyM4AD3rA0ypQnM8Frd/5phZP2X4jrSNWXtntlYxlbaWE0PSJ1OxuisJZGju4xS8+Ol1W6d6nruwk202/fwjz+wBKWyo/TDUJfcnG22z4pYec2BcKxiqK8Piz5PEOPE2GpYRfI2j7XX9ioFaBVxHTa2Cp7AUKgDgOZIqAIA2pAoAoA2pAgBoQ6oAANqQKgCANqQKAKANqQIAaEOqAADaqE0Vs5v/FW+FWD9l+Jbqu1yuzO2CT6/92MydPKcbC0Z3vJ49ImV2P6t0otwWOOy2mbtUZ9Zn7V7X85spVm+lc7bevst80vocy8/hmh4Dl1vD8nsW7zy5LLmBZ3Bv0NIdyaLPW/giTzcaLS/IeGP0uv2eLGX+Xp+lO+CGzyQBaGY1VYTP6Vpuh6qnrDm8b/oHMqcHyGIzV7+cZ5iWNHfkTpqg4kNS5m3S9ISpab6ZpYxbjPUbW5dXIWkeK7fS2kMyxztjJ9tj/r7gptPJsyty8xzfX2zVy1uhPqGuNKm5jV+cz+JunE22trTn7Pea78PsEV7RU0me9W3rgZfm3FSRbw2Gs6nKKVMVh7boSZqFxu3CT19e+ZWT/GQzZd9XbBOTVLHrZou5nz0C9pwVihNFMr/1rXROgIk2TLKVwoe+BTkhH2OiB0hclirynz37XfxT5nFryZPqsl+7cVaLBYVpnv1WzzTq0TrW7PdkuVa+22NJaCHTK1sAD3ZBqkjOncIabeWUqyfBwQG9P9Ltu812t5+f7o0zP+PT612aKuKfMw9HG5dtflDPVNvDxahs6gvdEefto9MWX95FuQ1TaNn7TLHvhod+FmY7f+RluQck/s3wYK2wsrTt9nFYmNcB5g/jmiY762GXtTks3NxjV8TyM9sKs86/cemD433naTNAW0+TKiof0jj9NJ7LRy1veEh9rFQxb7OqUkUgrsQMj4CMRmVkzlmHj15KGMvLnZuseivVto+ZfHjKIvNUEXWVrM9/YbxFaUmC3pM+ieT2STqoYL4o43iOtR6I1XSc5qQ0ac6e7nrmfg8yVLEGEVVnCoNUsh8JcL6nTBVLx+FoATZdFzfa+fP5R61VnGaYW+ywA2ZhC46rPa1M0gMy78Tfd1P+OKcpKLbZtVtp3wUdMhUfG5/tl3shwnEVhXrFVJwafixtgGyPxdSXVNGplt16p5Z62z/SO+gOWt/w8+2elBvSNxX6/mr3+zRJOJfqASP5ZQJ4gKdKFePcM73+qVmBOlf2vV6qCPtkymMncvM4Hvfd6Tx9MVUUjvmZt1Us9+wXDbbSbGX33Xa7nZraUqpINmfX9eWA04ZNFmi73W62XVceJRFKOm5OhZFZn0aNbr/vTnki/qSK4k3ma3luRpz1/B2X9nsfzU71h6kAdPrQZGmmH6UK4BGdkSric/KlVLE25Xz2x+NKkxG1EbkC/0WfXrHy8elhVapI24RCAJqlit1sLMSszFG5ShWp4iFbKWmK9t2m2+22p/+J+w2GJQ/6JjabTZ8Wyqli2BxJ70DpKxI2oGGEWV6TxVW9IFX0Hxi15vNUsfIx8ymL+33sz0irXEFmjGqDSRUoX/4AeJDKVJFGh/gQNxW1a6asPWsMTmujgZqn2aTH4/rlrBe2CeOJZrRYSfs/dchPM0iCQnbZ4oWb6u7jlEH/efC2pfCwlCoeupWic+J4luNmWqwwjO/Mt23RmXewGfONYHxSHne3LDWVZ6eK/Ncz+H2UBIbYtlgXWEsVS/t93/UbPE1Rs3gx+yarVQCPZTVVHI/H5Hxpaoe6bpue5NROWW69koN9JpNMZeJ0FvXLGSif1KafELVf0S9z8WFsEdLWrSJVRA3FPh13OLVwhW24fGJ90VbKzGDfbba7XZc0YOkP84Z+WPJ9oVZx2HWzFnk2p+Cj0q2e1P1Lm6JhrWJfGFkaf8R+GIc7vZT/MzhnvwcJL9zIcUEtLZkspYp9YbgoQI2aVJE9ZmaPsvVTLncv509DZ7NPmuv6T0+XpCpUzBcmKnTPFiwZfR/dByI7/iBeoFPTslrHL61ScaUv20qZRdwVg8R85w41qu3uEFboSz0gpWXKVhDizTNvp0ubsFGqyHXHhdsh/n7Ok2emf+yc/T7ULQqDZffDZbyzxcg4lQCHmtO5lT2AY02qKBx8FysFa1NW1irS7uXMO6YD9zmfnkxQDBXZIszKjEunx9Pspv8qZKupyV2YKAlgyXSlFunSrZR5w+zDK2oV/Y9DgSR8edbmDsu02Aqmby+28HMNUsWsmnBMd1dcoqroATl3v6fhdnn3F9ckWaeVWQCU1PWAvGI6lgGgkX8+VQAAjUgVAEAbUgUA0IZUAQC0IVUAAG1IFQBAG1IFANCGVAEAtFH/HJCzbxZVftPyXQMLt1g8zu5OOLtJ4PxuifXP36q5G9bSUyWCmSw/DCuzDItPIlm9u2K0eFW3/6y/k+b4uLTcgpTmkbvjZPL7tlup/oG0ud2+9JyQc9e9fMvYpT2ZXfnmW+mMv45ped22GzhPTapYDwGFW2lvt/lcsdYGpEe7OFiEz208HJKHf80Om8VYk7l58uIxtA9J5SNx5lGRC58Xf1ypLVhKRbPHVlWmirXdOT4QLdyzsy0ZzvucFvMxtlLtA2mjx7Y1WvdLlmNYs/LfwCNspbq/jmnLrDzVBSBrNVWsnp9njUe27CGuOlVUFDX64186Ze613EPMi5+wUAXJNSrpMyPzSxlunrWHb44TLq32OFWYKvJvyj04YkWc5hZTRfyMzGTBHnsrreea/ruY+QLEMy+VyM5IFcUnoMS/mz3ONJ6w7VY6668jXbjlp7oARFZSRR8KFlr3wiE+f4wMXjo9ljHfAoSpYuUINhzy0hah26fRZZwiPdTn12BxBdIj7dDu9AWUxfPLhf6B9JFdF9Yq9rMnrU+ff9htt7v92u6ct0KLvQD77vRczAX9Q0sfZytVtXR9phgf4llazHPWPf7N8IfSL8rpv7t9XHQLfzvukkxEbLqVzvjrmH2GVAGco25cxdS4zU64yqdJU5kiHWFxQQ9IVulYt+82220aBfopps9e6FJf/eTMEkyLvXB+uTQ2IPzIcCTJ+mdXp4rzHk1as4HCzz/OPqBQY2+9lWoGxUSl/fXtUL3uveDbtRmTyFKf1souabuVav86Mp92yqBSBVCpKlWEPQaHQ26Uw/BTMswybvnCU6ep1zh/vFw+cCWfdMydjR2TxmY69xuPl4dxXvNj6aHmqL2QnNaWPu+y43Vtqth3291uKSelIWl4sVSrmjbhlCqWZvlIW2mloyw86x4Db6FekazH+rqPCzuEgH4Tr+3JpWTdfCvV/nVkP1+tAjhDRQ9IjdOhdNb7nGlTonpBoe66mCrmiWJ4b6Z1CHovgoPoYdfVHhcXG6xxKYapsv3Vs4VKVzfZOhUfnMzzjB6QBckJ/77bbrebbdettykVpYJH2ko1n5mJwKdU0X8VT8kh2XDV6x4vYz/J7Ktf+3cUpJiWW+msv45+7TdhXpYqgEo1tYpkYF5cnSg3J+Vz/dpUcd6xeH42Nsx1mFlaHzl1L+dle3wKW2XfZXvA0yVY2KzDRy0er9cGWaRr+pBUMZx0n9rI5XEoy8NkgvP/q2ylwtvDIlXXbZdSxTnrnixRWA1Z3uKlDfEoW6n+r+P0X7vd9vQ/cZ/h0hIAHI/HqlQRHkYOh0N4wGqQKnIt0EKtovSr8nHzGL9Y7jDPHsqrUkUw5XKJIa4FLF1nknux2L2wH29tEJe2wyZ1vSXopz7stpuu6+LhBwvd++Ga5AbE5Fay1VZa7/rIfV+WUtDpLfXrPq8wBQFjKVgsBr3W36Xqv47kq7TPDOyUKoAlFamiomKQPTyeXasI39k8VRSP4mPLNw4+CBf73FTR//chOcTPljmzcXLbK2qWl4ebTJ8fpYqu25Z3UW4Gpzd1/QlsZghD+lI8VdjLlVncR9lKq+sU/HSy3R32hVpF3z1Wte6zlZwX3yqvQS3/ssVWqv7r2Hdj2l8fVxEMPgHoVY3WLHporaL8zgtSxXLOmQ9H22zi23RFvePLJ6pT25Rdqf1uu41HXcymnK/F/Lz+NMC1G8eRLKWKbAlmddRr7DDUvYPiyHrLmkwUbrDMPm6/lRZFZZT04ovyuIrKdc+OHJpvnux3vTZVNNlK5/11rBaEku144Rhj4FW6JFUExYul48nZqSLs+s4dJ5c+Mn82Fh0Qgz6Xebm41AxeVquYrU/YWEUfHxaCZp0HNZX++blleRFX7eNbQayPb9nudkN/QWYlwvcFAwQbbqWZdEvluj+GQk5mUaPv0Oq659a0doNX1ypm63XBVqr968h+vloFcIaH1SoAAAZSBQDQhlQBALQhVQAAbUgVAEAbUtbPlPUAACAASURBVAUA0IZUAQC0IVUAAG1IFQBAG5WpIr3ZX/4BHv3N+ua/Od17euFRBbM7GM5ujRzcz6/+JuG5WzCvPJHqvDsklqw8Wmq6xWfu1o0Ldys/4zGY8Xou3gb0IQ+MOuO5sgC8dnWpInjw1Ph4jHI7VHgS6fCYpNyv4wYz8+jLwkMx58t4TJ/qvE9ubbzehD74qYyH3TZ+xEj0m6iVnyWFtYd95G/MnUkm+/DBsLn7MVfuzTOd9/QvAF6VqlQRPBMhbId23ZgKkqmnhnNoRueFiqWnH0Xn1lFcKJwHZ36z3R2GN6QPDO8fK7WQTx7SyI7tarGBDdZ+MVXU1AHiJzTMn7Y6f6TEeXvz4rUH4N9TkSqKrXpSGYgCRKYvYpM+t2o3PtEpafqizDHOKf88plK3wGG3TUogcVhYarEf0CrGT4sMHn46/rwah6JUUbUo85lEcSJaptq9+ZANIFUA/KNWU8WpIez28ZiJoIXu26Gq4Qph5ggbn3mzGMy9nzJ4xmTUMiYPUIxmkCxUtgDSTvBU6qltzYywqH6ad9iBU96Y0efPahXjJwaPbF3fm5fbd/0D5j0eG+Dfs5IqDrvtpuu6WRs+tUOFhzaf0zTNTm/34Qd23az9z0WChbJE4TPXR1dUxaTggdmZAsv403xkal9PKM4yXafDIVqyKGNl5rDfbTfdLnrIe/XePG/d0w0bdD6pWgD8U1ZSxb47DetbbIfCpiVsTIpte0Wj1TfVce/I0KEQtn3h6Xg6gyh9RL0RK0twZmM4r/rPXxk/ft9tt9tZWMpuq+gSlt12G6xadpMOEx+GQDEbzXLm3rxAuOZJ/AHgtasZrVlqh6ZxEeN0Z57Y9lavKBmr96fJckMGcrWKYbqh7l+1RdarGHUzKQ732O52XX86H43AmH3qUFpY26brIS17te3K3my15gZaAPw7HpIqghaxH3YYj49MJ5rXNGpawek6yPhcPPjv4HKPbHObjKdY/uBHTRWnzRNtx/Lq55JGcgeO+e040u0zGypRtTfbrzkA/4BGqSJ72cJSqojU1SoWX1qsVeQmKXrweMV+Jrm5HHZdfE1n8JvZJsgOKI3uxVG6buahqaLJdbWlX6apEYDX46xUkb9wInp1niqm0/FiW3KdVFHXXLY5116eS1WqyNdMipknkyrG8k1+KGzF3rzAwpoPs25SDQLgGTorVZT6D8qtSHFgYYXgM+Phf9mPTC9wDS6kHC3cCnt9bc5SlyrK3UDb3W5WYVhZicBiMrh0b1ZSqwD4h9XdsRsAYI1UAQC0IVUAAG1IFQBAG1IFANCGVAEAtCFVAABtSBUAQBtSBQDQhlQBALQhVQAAbUgVAEAbUgUA0IZUAQC0IVUAAG1IFQBAG1IFANCGVAEAtCFVAABtSBUAQBtSBQDQhlQBALQhVQAAbUgVAEAbFani/t2H25u7z7+Tl3++v/lwe/Ph9t3P4jt//9hk3ggAvErrqeLv5zcfbm++3sev/vl0d3tKFbNf9X7/2CxPAAC8KiupYihIDP82n/4ej8fjt6+3Nx9u3/y4P2WLUrliCBb9uwCA12y1VvHtaxgL/vz+O2SFU9fGqZJRDBZDSUM/CAC8epWp4s3d7c2H999+fn5zdxtXL6Z/b378ybx/JXYAAK/FWqr48+nu9ubu/btTqjj++XSXzwffvp4mmLt/Z3QFAPwL1lLF/bsPtzdfP3/qU0U/omL49/7Tj83N3edvPzbFasQ0MsPoCgB41WpGaw6jMsdUMf3HaqqIUohyBQC8YuddA3L3+dNZqaIfVPH+2/gfj7QaAMCTq7u35p/LekD6ib/eH6eLUXMjOgGAV+CiVFFXq+jrHGN94jRs0+gKAHilHi1V9Jd+hMWJ6EYXAMArc9G4ivUekLDvI9DfFEs/CAC8Qg+sVZx6N37HqWIYe5Ebm+mmWADwWjVPFUuR4qTiYacAwMtzWap493V4usdQe+hHS6QjNPOGp4650BQAXpG6VAEAsEaqAADakCoAgDakCgCgDakCAGhDqgAA2pAqAIA2pAoAoA2pAgBoQ6oAANqQKgCANqQKAKCNtVRx2G23u8PxeNx3m26f+f/i1Fmn30b2Xe7VwrJsNplPjSZY+DUA8JgqahWn/LDvNt1+ihKH3TbTfs8ySP63ydxrQsUpUSznlPBDc7FG4ACAx7SSKrKNebefvb7d7cNXum6hVlEMCIUQsO+yRY59FweFIeccdtvNdrdLwooyBgA8trpxFacz/6lVDgoMUQHi3FpFdrL0g+dzzOSMsXbSL1paApEqAOCxraeKvgnfdUGxoduO+SAKBtlUUWrQF2oW+fZ/7NXIBpawHKIHBACubyVV7LuhMT7lhL717vb7bmy9g5pA/+sxgxT6QI6LIy/nBYwhM2x3h+GH7FiM4J1qFQBwbVU9IJkmua9KTI33UByoqVWcXildJ5IOqZgiRP4d0wLEIzelCgC4qopaRbnYsN1uZ233UE/I1yu6/cq1qfnXh8VIXg8GbEbdKadLVopZBQB4DKu1iugkP6oATCMpw4m3u8NxvAw1/nUSFypqFUl/RzDcc+3eFWoVAHBtq3fB2u8PQR0gugxkXgCI+kUqUkVtrSL8gIXCQzD+YilVFCofAMCD1Iyr6Fvh000o+tQQDp1Mrizd9w34WidEIT2sXTKSv2dWerFpOVUcpsWrvKcnAFCjZlzFrHmevzLdBavbBVeXnlOrWKyIFNNExtJdtob+GbUKAGjO08UAgDakCgCgDakCAGhDqgAA2pAqAIA2pAoAoA2pAgBoQ6oAANqQKgCANmpSRfBQr1HwuNDc9I91M+zDblt8BEj8DPa1J6M2ENw8dPjPtduA5zblMLPcLxYeitbfQjR+Vzj/+I7pp7nsu82267az243mP2thbeb7ePUO6MV1eYp9B8BjqEgV89bg9MrSY0D33WPcEHt4+vrSU8mGx6X2kxx220dqmKLVn36InuS68FjWWYOfzWL5bZ+5r/m0urOYEc5gavpnISAbKpa2XfLAttUcuTTNlfcdAI+j5jkgcfsXNlzlU+9HePT4mFQykSX77I9uP3u9XQklbiPLz4uPLWywY64ZL27FzFPlt7vDQqo4/UchVaSbqd/PmWeoDB+2lpGyq57fLNffdwA8kvVaRdR+zRqUbdcV2smlPpLzRSWAYgt1WrxocYfJpvZ2352egfaQxmrWE7PvTlWUtBFcr1as9ZjUPi5+353qR2upon9bmiqmH4YZpc9+C1PFQo1qqXy19H2o2ncAPGurqSKoSpeajOy5ed/MtmgNgsekTmWKXLu+2Wx3u25sqw+7bjs2R1F7ugkbrPOXsT+LPrW9Fafp0TtLwyfGWSwFkXH9CrEuKSTNJqtMFfM99+BUMW6zwtvq9h0Az9paqojzRNDghUMK5g1l31jnTrWXHlQ+P4lPHsUed35Mp7/T66dFHduwYRBkPLIymMf5seKw256GPKbPcZ+1fHXDKsalycyjVKuI1iEIWIu1iiFVzIdxzmsVx6QtD0PIJT0gpwXOxoNz9h0Az9pKqojPd3e76Tg/Zo3SFSLTRQcXtwjzARTzV8JUkG+Wt7vDrFF8SKrYd33TF31UxYruu2ATZlSnimmvpH0E5VSx7zbb3X6a3eq4imO0bcI8cEGtYvi0cl9G3b4D4Fmru19FvlZRShVxA9G0UShdW5I5fe4/dLhupFTvuPAy2LMuw4zeEF8uki5KTarYd5uuG0/ro1+vXAOSuRZ2/rYoGQy/WYgL670T4UTzzXTOvgPgWatOFZvNZtN1FbWKeFzlse3tK8qNWPkqjHSBHilVxPPNlALiJcr0FdSlitOcs6M1Cw1z5vrX6lRxnL3Yr+b0/mCu2VJEus/muaJ+3wHwrFVfWVpXqyjcparqjLZGcUaH/f4Q1PHnV63Er9SkisWFLo0YmbW0fbuYtrfBCNT5PKc7YuVKImHtIF3lbK0i2F/xmMz6VBFVWoYFmNccTnEnfHv2yo8kK5yx73IvAfBsnNsDEtYqTuJLNhcvAXj4WediSz9VVPpz9WmoZ/jxlali+YYbCwMeun1QzInP4vfTRQ7j5PEwhqTNPOPK0uBjgs0RB764eV4dV3FMp45zU+EqkSiBlPZ5snCV+26YtaEWAM/T+anidPnf0MaMjVBFrXopdVRaHFexUgw4s69j+XLGYnOfJIX41cWVz9V5HpIqCr+YXYOTVlLGWUdTZssXsXT0auX34ax9p1YB8JzVpYp/0HKoAABmpAoAoA2pAgBoQ6oAANqQKgCANqQKAKANqQIAaEOqAADakCoAgDZqUkXmho35Z5TXKNwRsuaWUw+5T3Nwr+fCMo1rGTygNfr/q3i85VzYeg/dd8u3+WywPZs9RwaAR3VhqlgPAuc0BHWp4gGhonJhgkexTk3fYbe9WoP2iMtZvfWCRr94/+/R8KzypduKN9ieUgXAy3BWqiie02banqWGYP4Iifx5cc10pXPo+MPWm6TsZ50eybq2qm00X879ZVvvjFQx7uPMzm66PaUKgJdhJVVEbUD4CO5e+Qx4rSEIT1nDWkWhJVstm++7zabbjYs7zCN8VFZNA3YKTtHDuIMnjD7egzIfdzlXt15Ffst1gsVPPS3st9XljD+89PC4/jFkxWkAeHoX9IDMH3mds+82p9p4sY2ccsc0o1M2OGS6W9ZOtKMnX87auNNnleczPQ9zeChr/1TWbrudBZRH9BjLWbP1pj2QT3jzr8CwseO9GH1y7XIegv2df9RpnE0qHocKwJM4I1Usnc/mG4Lt7jA7WU2mGQYgDj0e8wlPH7v6OPC4NhLFioXz6Ogkeko2U6W+2++7sfk8symr7cDZTE138+Ws3HpRqhjfHg2GCMJAuL/j7T497P7S7ZmtcSUvnvlMewCupTJVxMmgpps7nOY0g7CQUGMYWRGWvrMTZZZpanf205lyZhHTtciUX/oG9SEXoNR4jOWs33rj/MJdNUWEMVXkr/2JXwnb/NrtudIJkn6IcRYAz9NKqhhapKnqsNI8Re+MXi21BGODkp3H4rWI67WK8Ty5qgaQCEsI28c9O36M5Txn6wUXtG53h8NuexrseYokwytnjZ85Y3sG6aWuViFVADxT546riJuXlXsgrB34h+75Q9iAFea1FmcWekAqR4BG59XRml2rI/9xlrO+VhHMLNich91223Xnpor65Zz3odT0gAgVAM/QealiKlSf7kOwcGxfSRWzwZXBiL/c5QYPGVdR11of9vtDUIifVwcuXtdqj7OctbWKuGAQL8j5tYr65Ux7TKLRn9MgjahfZ3jz+r4B4IouugtW0FhUXOGR+838KoX0bDxph0p9Jw1rFcexkeq6IfNM4Se47GFxOR7icZazZuutrcIFqeKM5Zy+T6crRoLrgabwsN3OEkrcb1NeegCupPJ+Fd2+ECXyxYXjeefva21apgtgdga8Mv+42ybz9uTShmOufS5ce1AqBpztcZazZuuV9kB+GdIpiu+8bHuOM1iPCmoVAM9KTa2CRc1CBQFbFeAFkioAgDakCgCgDakCAGhDqgAA2pAqAIA2pAoAoA2pAgBoQ6oAANqoSxWFWxIt3/7wshtZx0+4Gh6/vXiXxaXbSedvhTl/teLx7NHdKjNP4crOe74RSmsze33hmWbjHU1zTw4rv2fhpttrzt2R64+B+Tf3cm7i6m9E0SXfh8yd8wEe7JmlisLDKaIGtqYRDJ9QlX+KZ7JkFTcNTx+ukTaLw2PED8k9qWfNTeGpHONMys3d2CqmTzsvLmfmE1a1eK7JYqr4R/dy/2JlqlhLQOd/Hx4jPQLE1lJF3cF9el5UxXTLn5Y8YyT/KO3Ycnu57zbdfmnZxoWvam8q1rI/OKdT5l4b1mk63S42MaWT6DNSRfI08ejxa8WHglz26K6lVPGv7uUkVeT/tIqPja1Y6vVUMT2tLZy5u6MDzTSsVeSePJr8nDtkx61Z9I59Fz6pMjo8r6iuPse/KM2424ftzcrRfviMNAmcWr3cFukzxb4bHu9ZWKV5C1aueMe/GZ4OFz4kdNvt49Py8LfBw8gvanBOqWJaCHs5lyrGGs30hzFu+O1uX442+eyz9H3oP7/49VreogCVqlPF+mGoPlUcotOk+BA5O+Ncb9QKTcAwn+xJ/jGJShfUxrNK1YC+6Zx1x4+PBx/evX6OujDeIqv/lHH7FvvTh49u8YDx0zoFJ97//F4+I1Wct+Grvw9qFcDje4paRTqP4Ux623XLcxjfUCM5Yicfn3bFjx81r313+9mq5jfR/DnfyVnsMdmSwUyjpid/Qjm1CMOPpTp9dmzAYbfd7nazpcx4hHEV/eb+t/dybarYd/2OWl7pZEutfx+iVLE0S4CLPUWt4pjpBNl3/VGxanR8OskudxVAPId0FYY+h7TqP2+W1tubeVszX8fxwB20dPN2ZUgVfXHhtE2SJmi7nTfNxYp9UlQ/zAc8nNd+10o/ZugR+cf3cm0PyPKmiDds9fdBSQJ4fI1rFSuCQ39YHB/+OzuWfqnBic49x0N02ATOZjANL4gqx7XtzRltcPYsdpjrMLNkcN+pdSiniqHgcMoH0XDLUvdArhqy3Lo8Qq0i/Pkf3cvxPjy0SRXnfB+WB5UoVwBNrKSK2sPr0HFfU6uIG5zlVBFPHDUeh+Ea/XhR5+9PCiTj0IFWtfHSr8rtzbH44tKR/zToIhp6kQ9y4ebMNjSH5UGYj9QD8s/v5dN/hBFmnirWB0j0Ux92203XnfN9mCbLDR+5eAQNQKiuVnESjrKMrtcvTF5onJIT6M1iqginjk9VT930aR93engMRhXMri0otTe5A+xjtDdpUzsu1b5Qqzjsuriin/+s/LaYn56X1qg+VZTLHrMSwTTdP7yX09WbUkXXbXNxKWMcfLHZdl399yFTWBzCyezdwVANgPNUpYqxyZvaiX2XvpR9V/64FDahu+VaxTFok8Yz9aCWvh3vJxgHlWAcX3QqGhwsowPqWkt6WXuTLSHM3ji2wFOPe3lcRf4DZ63IvL2fNzSlTFCdKhYm3Heb8HrRpRrW9Oqr3svTZklnUzGuJP3EbhesSVWqSCYKFztbLzt7sQCOx8oekLVO7wc2TuvviNuQ5NWlzziln76Vykya6bLPfnBuI0z9FPntkz+LjVqh2foMjWQ4x6Q9ren9z7x9ZTdmN8qay4b//bt7ufDxZzffhVElS9+HXTdtn/I3JM5lahXA+c7pAYHQZaECgNdLqgAA2pAqAIA2pAoAoA2pAgBoQ6oAANqQKgCANqQKAKANqQIAaOOJU8XC85TyT0rK30AyN5voyaiZea/ezjBzQ+uKuyC2eDQXALxIj5gqxlgQP6B03dmN8rwlP72y1MKvPQ88f/PldEHPeGQ2ALx2j5UqwkZ7oQGvevbz6gclzXc405ViyNpiJcUJtQoAKFtNFftuc3pC4qzbYeVdyWOX+5Z2/eT+/JQRPY9i9gHbrisEi1IfSTiL/BO3i5OrUwDwD6tKFdGTpGta/bQ6UaxWFEoJq2MqwkZ/3526Ik7PZMx+TCkNbLfl9ZmiUCk2TEEpn6D6X0oVAPwj6moVY7sYxIp8Wzt2HORSxYNGIZS6FuI8EXxE+ADqeXTo16Q01zM6MqQKADgejw9JFfVvKtUq9t1mu9t1S/MLWuyodhAvUZBphtmFWaN0hcg4t9xvt7v9ac7b3SGfhsJhI2dnJAB4fZ4sVYwhIe1pCKaLzvuDHzJLka9VlFJFXFCY5YrTTKbX5gWHQiljijiiBAD/nsfpAVnuFegb36jVzrTEybtmESNKAsMsuopaxb5LRmGuZaWqVNHPtf/N2oWrAPD6PE6tYuHK0qnxnTXsyxdxpg15P8EUbupqFYfdttAbk7nlRT+flVQR1VjS612ClRiWTdoA4HV6rFQxvDVqRYN5nVr6fopw6MTpDZmhEPPyQNjYTz0gYa1ifGdYX1m43+ZpSdJSSqEs0+1zM8zXZU7ZZnjLA2/RAQDP0xPdsbvPDzVn7VOTXtNJse+2u904LCK6vees46PwWdlCRt24isXfqFUA8Mp5uhgA0IZUAQC0IVUAAG1IFQBAG1IFANCGVAEAtCFVAABtSBUAQBtSBQDQhlQBALQhVQAAbUgVAEAbUgUA0IZUAQC0IVUAAG1IFQBAG1IFANCGVAEAtCFVAABtSBUAQBtSBQDQhlQBALQhVQAAbUgVAEAbFani/t2H25u7z7+Tl3++v/lwe/Ph9t3P5bf/+XR3e/Ph9s2PPxcvJADwAqynir+f33y4vfl6H7/aZ4WbzK+O2SmlCgB45VZSxVCQGP5tPv09Ho/Hb19PQeH+lBjicsX9u2DKear4/WNTkUUAgJdmtVbx7WsUEX7/HWLBqU/kVMmIgoVUAQD/pMpU8ebu9ubD+28/P7+5u42rF9O/ITdIFQDwT1pLFX8+3d3e3L1/d0oVxz+f7vLDM799PU1wlCoA4B+1liru3324vfn6+VOfKvoRFcO/959+bG7uPn/7sQk6QU6pYu2fVAEAr0zNaM1hVOaYKqb/yKWKhGtAAODfcN41IHefP0kVAEBW3b01/9T3gPQTTB0c81TRd5Gs3T4LAHhRLkoVS7UKqQIA/lFSBQDQxkXjKvSAAAAzD6xVfDsej8MtKKQKAPinPVaqqPgnVQDAq3JZqnj3te8Q+T08ByTzqPQitQoAeI3qUgUAwBqpAgBoQ6oAANqQKgCANqQKAKANqQIAaEOqAADakCoAgDakCgCgDakCAGhDqgAA2pAqAIA2pAoAoI26VHHYbTebbl834ep0h912uzscj8d9d5o4/f/i1Fmn3yb2Xf71SwwrlV2Amq0yn99s2fbd6ryqVikzn8Num99MizPs37VkenMwp30Xff7qZyys8+y92e9HbrmXttNpJvnVm899XIZkvZIPXN9E8/kuLeV8y6zs/eXlPO8vDuByNalivYEJmpTxIJVrg8NfdvvT/07vOey2mUPc7IiY/22iXaooNieXmrcYp1fWWpL4p2jqaVv3U0S7rLD0y5toLR+m746DxbjHtrvD4XBRqsj98rDbLu7WPv2W12ycaWknLHxc4YtQXolpMSoi2mz3zb4K5b1Rs5xn/MUBXG41Vaye+0WTjkfs7W6XHNqjA3oub6Svb3f7qG3szqxVZJx7CK2u0dRKFqvbx7koyUjnpIp4K+SbutrGrV+sulRRN9Pyni/szGCVim9bWOdcsAgb3/VaRaaakP1bOKdWUcgG0W5P5zfsjNJ8K5az/i+uUXUP+HetpIr+vGfhyBm2iKcjZn9AT4/raTN1amCnV+JmJDrKPlGtYvzA0oc8bK79D8nm7LptrmWd/XRJqigtRc5pDqVep6AesL5xigWCzM/TyXrmG5CuQdwU55r7uC9mKPpvd4flWsVCf1T6ta2qVcRvXvwzitd232WKWNMU5yxn/V8cwOXqxlXEtdzpuBQcjILgUR4GER21t7tdN05/2HXbcV5Rk5dNFTWtZqvD5ClZlYPVeZ8T1KBLLXvUR76k0NvUx8DlivnaLC/oAVmeYWaepeZyen1l+MHiJ+eWYFzshVpFRZfX6fvbdef1a9RJU8V2mwamforq5dwdzvuLA7hcVaoIT2oOh1wPejBlkBzytYrpaBgNnOv2+y7sjg/fFx4Ri0ftlfr6WHY4qyUo9eRfehiO80TQIIbNeb4VqqtVlAcjRn38pTgzTxXzWQWn/MtruthHkf/51N4lATUfHCpb1mCaMzq0FqLK7BtfqC1VzzDesPNaxTH5uiUfub6cZ/7FAVyuogekxnA+VCzYz5qQ/OC4uOtk+PS6WsXS2fVlIWDfBR/fYoZxE73d7bpw1cZD/rT6SZdRuCRJxX6eKvpfznoKyv0am1ytIk45YTYsN0SZRJEucuHnoEOtq23n6kY2DFNlxylkNkBxiWepIvq4WQFj2pmrKSyb4qaBlZv896JuOev+4gAeqKZWUT4dSxv68FBY7AHJ/CIsDKQF36Asnq9XDEvQOlWkjfyDZzh/d1yreFCqiDdIPlVkz3wLK1WbKmpz50pjHn8Tggkr+p6qRjbsu+xoimC9Crt5Fo3XahVxt+CsrJfZYNFOydYqorlldt/ycp75FwdwuYpUEZ1BHg7hAWupbV2oVZRHGmb60aNj6VKXS/taRfjxzWbYv3uz2Wy6rk2tIgkYp4a42Eu1mARa9IAUf1VbqyiPpsju4/rxkqcpl8PNwibPfVRaqwiKdvmvebJXw5i2kiqOxRdXl/OsvziAy1Wkioqz0VnBYrs7lFPFYb8/RGej6SdFx8yoSvtSUkWpv3/ali1rFYtnqvlUcWmtorQ0lb+KrY65DeY4DbLs62DROfxZqaL/70PSDM+WObMT5y/lC3njyIX5dJfXKkqru76c5/zFZf8IASpVjdYsCg96aV/68riK6Wx9M427C4bnR0MBTneu6Pb5hBOmiprkc56LUsVaczl1RWSHjCyNUcysUyZuLOyH8sJHS12xCo+bKsaAut3mermCtawbV5F84H633cajLmZTztciObEvfHAwcCXKB9laRTjvpXEV0YTxQJnV5Rxf26z+xR2mPzQVDOACl6SKoLUr16nLR/ndbCjf/NB4ajOGu2B1u+Dq0ietVcTFhaK1jwtTxWmoyFAxX511uGC5URK5M9mVVJE9iy1szWDabFu29LUor0LuM+Yl/dLGuaxWMVufpXy88oUPPq7rkrDSz7nYTCflq0KtIh21dNZyphOW/+KCgTJqFcAlHlarIOthgy4A4IWSKgCANqQKAKANqQIAaEOqAADakCoAgDakCgCgDakCAGhDqgAA2pAqAIA2pAoAoA2pAgBoQ6oAANqQKgCANqQKAKANqQIAaEOqAADakCoAgDakCgCgDakCAGhDqgAA2pAqAIA2pAoAoA2pAgBooyZV/P6xuflw++bHn+GFP5/ubt/9HH76+/nNh+DH4ZWbr/d1M7x/9+H29obXLAAAD8ZJREFU5u7z72Sin+9vPtzeJHOez2f+RgDgSVyQKk4/3nx4/+14PB6P377e3sSxoJ/+6/s3H25vgn9jPohmmI8gfz7dDW8spJNhMZbiCwBwPRfVKvok8ebHnz4TDAkj+O3m09+h3jC2+n8/v/lw++bHn2mGQ0Fi+Lf59Dec//0pW5TKFUOw6N8FADyllVTRh4bx3/tPY4Vg9i/q0fjw/ts8jsxTRRhBjsfj8c/vv0NWOBU/hgUoBIuhpKEfBACeXEWtom+5w1rF8XjMVimOx6E+cff5d1jSCN6STRVv7m5vPrz/9vPzm7t8ZMksQLQYS8MvAIBrqEgVp9pDbaoIhlkEYyNO/RQ/56niz6e725u79+9OqSIZB5rOdpZggsUzugIAnthqqhgHRValirHH5O7z71N7//V+qHZkU8Vpms+f+lQxhJKww+Xu87cfm2I1YhqZYXQFADyptVQR1xu+3s9GWsQDLcc2/u7z75/vo4LEh/ffCqM1h1GZY6qY/mM1VUQpRLkCAJ7QSqoIrtE4tf3JIIlMreJu8+bD7c3d509De//u5zB+c/UakP5d1aliXIbSIA8A4GpqUsWbu/TK0uOxNK7i/tspQ9y9f3c35omozpGM1jwej1Mx48wekH7ir/fH+chQAODK1q8sHRr12mtAkntlDtWI8eYWFamirlbRz3lcgFOCMboCAJ7I2riK+28/M3fBOh6rU0XY2LdMFZkrU6IbXQAAV3bevTWLQzXDqzCiVNG39KdxlLXjKtZ7QMK+j0Dh1hoAwBVcdsfu47GuVtFPk/ZK1NcqvgXTj6liGHuRG5vpplgA8FQeM1X0nRTzBv53Wns4I1UsRYqTioedAgDtPV6qOPVlZAdDzEY/pKni3XiDzui2WvMRmksL7EJTALiqmlQBALBOqgAA2pAqAIA2pAoAoA2pAgBoQ6oAANqQKgCANlZSxX8AAP/9999//zVIFf8DAP55UgUA0IZUAQC0IVUAAG1IFQBAG1IFANCGVAEAtCFVAABtSBUAQBtSBQDQhlQBALRxpVTx68vbTeDtl19XWDcA4JqulyokCQB43aQKAKANqQIAaOMpxlXIFwDwGj3BNSDfPwoWAPAKPcWVpd8/bjYfvz/O+gAAT+X6qeLXl7dCBQC8QtdJFYZVAMDr596aAEAbUgUA0IZUAQC0IVUAAG1IFQBAG1IFANCGVAEAtCFVAABtSBUAQBtSBQDQhlQBALQhVQAAbVwtVQQPGKt9YOnpLenU3z96TBkAPEfXe2bpkAHC/y77/nGzefvly8ckVZxe/jXMxxPVAeD5uEqq+PXlbdj+f/+4Fit+fXn78ftpyig4xO+syycAwHVcJVUk4SAJGfVvDH8celRUKwDgmbhOD8g8DlyaKt5++dXnif6/pAoAeCauNVpzGqz59sv3h9QqwlGaUgUAPCNPcWXp94+1WSDTdRL8bFwFADwnV08V6QDM8yYOrgE5b04AwGO7Uqo49yYT0/TpPS4uuO8FAHAN7q0JALQhVQAAbUgVAEAbUgUA0IZUAQC0IVUAAG1IFQBAG1IFANCGVAEAtCFVAABtSBUAQBtSBQDQxlVSRfBEsHOeMXZ62/wZYqXXAYCn9AS1iqonmJ8eef5lNmnpdQDgqV0/VXz/uF6p+PXl7cfv/5sHkNLrAMDTu3aq+PXl7Rl5oJQepAoAeH6unCpqChXx5FIFALwQV00Vv768PStUSBUA8IJcM1WcnwWkCgB4Oa6XKs4uVPxPqgCAl+RaqeLXl7fnBIHvH5MbXPRvLb0OADw599YEANqQKgCANqQKAKANqQIAaEOqAADakCoAgDakCgCgDakCAGhDqgAA2pAqAIA2pAoAoA2pAgBo45qp4teXt2c9D+w0/WazOftZpwDA9V0rVXz/uNm8/fKl+gnmZz7jFAB4ctdJFb++vP34/X+nbFEVFb5/VJ8AgBfmuuMqalPF9499YUMHCAC8GM82VQQTVlc4AIAn9GxTRVif0B8CAC/As00V4XRSBQC8AM8zVfSXjJyCxK8vb4UKAHj+rpQqvo8jL3ur2WK6WYVIAQAvgntrAgBtSBUAQBtSBQDQhlQBALQhVQAAbUgVAEAbUgUA0IZUAQC0IVUAAG1IFQBAG1IFANCGVAEAtHGlVBE8K6zieWHJ1B4wBgAvwfVSxcXBoPrx6QDAU3r+qeL7R5UKAHgJnnuq+PXlrUIFALwITzGu4ox8oVABAC/GE1wD8v1jbbD49eWtUAEAL8VTXFlaO/zSME0AeEmunyp+fXlbFRYUKgDgZblOqjh/WEVt9gAAngv31gQA2pAqAIA2pAoAoA2pAgBoQ6oAANqQKgCANqQKAKANqQIAaEOqAADakCoAgDakCgCgDakCAGjjSqni+8fzni4WPY6s8oFkAMCTun6t4vvHioeR/vryVpIAgJflCXpAvn9crz1IFQDw4lw9Vfz68na9VCFVAMDLc71UMQ6tOHtchXwBAC/B0/SAVFQr4ukFCwB49p7iytKagRXJ9GfFEADgKVw/Vfz68vaskHDu9ADA07hOqjh3mIRhFQDw8ri3JgDQhlQBALQhVQAAbUgVAEAbUgUA0IZUAQC0IVUAAG1IFQBAG1IFANCGVAEAtCFVAABtSBUAQBtXSxXfP3paGAC8aldKFd8/Dg8z//XlrVwBAK/R9XtAxAoAeJ2unyq+f9wMdQsA4BW5dqr4/tHACgB4na6aKn59eStTAMBrdb1UIVIAwOt2rVSh5wMAXrvrpIrpZhUD4zUB4LVxb00AoA2pAgBoQ6oAANqQKgCANqQKAKANqQIAaEOqAADakCoAgDakCgCgDakCAGhDqgAA2pAqAIA2rpIqfn15mzxcbO3xpeHjyDzqFABehCeoVXz/eNYjS8+cHAB4ItdPFd8/nll9OPsNAMBTuHaq+PXl7XmVh7PfAAA8jSunijPqDuPQCoUKAHgRrpoqfn15e0FGMLACAF6Ea6aKS+OBgRUA8BJcL1VcVqjoL0tVqwCAZ+9aqeK8bBDd4EKdAgBeBPfWBADakCoAgDakCgCgDakCAGhDqgAA2pAqAIA2pAoAoA2pAgBoQ6oAANqQKgCANqQKAKANqQIAaOMqqSJ6WFj9E8Omt3nAGAA8f09Qq/j+seLppZ5/DgAvzfVTxfePFaWHqokAgOfk2qni15e3FSWI7x83b798+XhWfwkA8LSunCoqaxDfP26C/o+qLhMA4IldNVX8+vK2ru6QhA/9IQDwAlwzVdTXHJIppQoAeAGulyqqCxX/+98pVgwTn/VGAOCpXCtVnH2laHCPC5ECAF4C99YEANqQKgCANqQKAKANqQIAaEOqAADakCoAgDakCgCgDakCAGhDqgAA2pAqAIA2pAoAoA2pAgBo43qp4vtHTwsDgNfsSqkieLL52U8vBQBehOukiu8fwwLFry9v1SsA4NW5Sqr4/nGqTvz68naz2ahWAMCrc61U8fbLrz5P9P8lVQDAK3O1WkU4SlOqAIBX6CqpIhmgaVwFALxG178GJBplAQC8Gle7X8UwStNATQB4pdxbEwBoQ6oAANqQKgCANqQKAKANqQIAaEOqAADakCoAgDakCgCgDakCAGhDqgAA2pAqAIA22qQKAID/Hp4qAAAqSRUAQBtSBQDQhlQBALQhVQAAbUgVAEAbUgUA0IZUAQC0IVUAAG1IFQBAG1IFANCGVAEAtCFVAABtSBUAQBtSBQDQhlQBALQhVQAAbUgVAEAbUgUA0IZUAQC0UZMqfv/Y3Hy4ffPjz/DCn093t+9+Dj/9/fzmQ/Dj8MrN1/u6Gd6/+3B7c/f5dzLRz/c3H25vkjln/Pl0dxsvHgDwFC5IFacfbz68/3Y8Ho/Hb19vb+JY0E//9f2bD7c3wb8xH0QzzEeQPivcLKaTcEqpAgCe2EW1ij5JvPnxp88EQ8IIfrv59HeoN4yx4O/nNx9u3/z4M81wKEgM/zaf/obzvz8lhrhccf8umHKeKvrQs5JFAIDWVlJFHxrGf+8/9YWKzL+oR+PD+2/zODJPFWEEOR6Pxz+//w6x4FT8GBYgCBZSBQA8SxW1ikIXQ65KcTwO9Ym7z7/DkkbwlmyqeHN3e/Ph/befn9/c5SPLLLVIFQDwzFSkilMrXpsqgmEWwdiIUw74OU8Vfz7d3d7cvX93ShXJONB0tqfPkioA4FlaTRXD2My6VDH2mNx9/n1q/r/eDw1/NlWcpvn8qU8VQygJO1zuPn/7sQk6QfqUs/JPqgCAK1tLFXG94ev9bKRFPNByHH159/n3z/dRQeLD+2+F0ZrDqMwxVUz/kUsV+SV0DQgAPLGVVBFco3Fq+5NBEplaxd3mzYfbm7vPn4aqw7ufw/jN1WtA+ndJFQDwAtWkijd36ZWlx2NpXMX9t1OGuHv/7m7ME1GdIxmteTwep2JGRQ9IP8HUwTFPFf2Hrt0+CwBoav3K0qFRr70GJLlX5lCNGG9uUZEqlmoVUgUAPFNr4yruv/3M3AXreKxOFeElG1IFALxi591bszhUMxiwGaeK6DrP2nEVekAA4AW67I7dx2NdraKfZry3RGmGxVrFt2B6qQIAnrXHTBXF1v13ek3H+ami4p9UAQBX9Xip4tSXkXsw2HibrFGaKt6NN+iMbqtVSa0CAJ5CTaoAAFgnVQAAbUgVAEAbUgUA0IZUAQC0IVUAAG1IFQBAGyup4j8AgP/++++//xqkiv8BAP88qQIAaEOqAADakCoAgDakCgCgDakCAGhDqgAA2pAqAIA2pAoAoA2pAgBoQ6oAANq4Zqr49eXtZrP5+D3z4mYz/w0A8KJcK1V8/7jZvP3y5WOcHX59ebt5++XX7L8BgJfnOqni15e3H7//75QtglTx68vb8MfvH8UKAHi5rjuuIkkVyyEDAHhRnjRVRD9nR10AAC/G06aKcLDm2y/f1SoA4AV76lSR/FaoAIAX69mkiuXAAQA8e1dKFd8/bmJ9gJhed/UHALxw7q0JALQhVQAAbUgVAEAbUgUA0IZUAQC0IVUAAG1IFQBAG1IFANCGVAEAtCFVAABtSBUAQBtSBQDQxjVTxa8vbzfJg0nDp455vhgAvGjXShXfP242b798WXjcuUehA8DLdp1U8evL24/f/7eSHL5/VK4AgBfsuuMqFlLFry9vlSoA4CV7+lQxDq1QqACAF+3pU0XdLwGA5+4ZpQoDKwDgRXs+qeLXl7dqFQDwgl0pVYT3pdhsxrtWnO5gYVwFALwG7q0JALQhVQAAbUgVAEAbUgUA0IZUAQC0IVUAAG1IFQBAG1IFANCGVAEAtCFVAABtSBUAQBttUgUAwH8PTxUAAJWkCgCgDakCAGhDqgAA2pAqAIA2pAoAoA2pAgBoQ6oAANqQKgCANqQKAKANqQIAaEOqAADa+H+70QQn5uvF6AAAAABJRU5ErkJggg==" alt="" />

--------------------------------------------

AC代码:

 import java.util.Scanner;

 public class Main {

     public static void main(String[] args) {

         Scanner sc=new Scanner(System.in);

         while(true){

             int n=sc.nextInt();
if(n==) return ;
int ans=sc.nextInt()+sc.nextInt(); while(--n>){
int t=sc.nextInt()+sc.nextInt();
ans=Math.max(t,ans);
} System.out.println(ans);
} } }

题目来源: http://acm.nyist.net/JudgeOnline/problem.php?pid=596

NYOJ题目596谁是最好的Coder的更多相关文章

  1. nyist 596 谁是最好的Coder

    http://acm.nyist.net/JudgeOnline/problem.php?pid=596 谁是最好的Coder 时间限制:1000 ms  |  内存限制:65535 KB 难度:0 ...

  2. java 练手 谁是最好的Coder

    Problem A 谁是最好的Coder 时间限制:1000 ms  |  内存限制:65535 KB   描述 计科班有很多Coder,帅帅想知道自己是不是综合实力最强的coder. 帅帅喜欢帅,所 ...

  3. 谁是最好的Coder

    谁是最好的Coder 时间限制:1000 ms  |  内存限制:65535 KB 难度:0   描述 计科班有很多Coder,帅帅想知道自己是不是综合实力最强的coder. 帅帅喜欢帅,所以他选了帅 ...

  4. nyoj 题目2 括号配对问题

    描述 今天发现了nyoj,如获至宝.准备开刷. 括号配对问题 现在,有一行括号序列,请你检查这行括号是否配对.   输入 第一行输入一个数N(0<N<=100),表示有N组测试数据.后面的 ...

  5. NYOJ题目27水池数目

    --------------------------------------------- 这道题有点坑,也怪我总是有点马虎,按照正常人的思维0是表示有水池啊竟然是1表示有水池,最坑的是写反了竟然还能 ...

  6. NYOJ题目20吝啬的国度

    -----------------------------------------n-1条边的无向连通图是一棵树,又因为树上两点之间的路径是唯一的,所以解是唯一的.(注意并不一定是二叉树,所以最好采用 ...

  7. NYOJ题目28大数阶乘

    -------------------------------------祭出BigInteger AC代码: import java.math.BigInteger; import java.uti ...

  8. NYOJ题目198数数

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsYAAAK1CAIAAABEvL+NAAAgAElEQVR4nO3drXLkurvv8X0T4bmQYF

  9. NYOJ题目170网络的可靠性

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAs8AAANvCAIAAACte6C6AAAgAElEQVR4nOydPbLcNhOu7yaUayGOZy

随机推荐

  1. 纯CSS多级菜单

    主要代码部分: /*新增的二级菜单部分*/ .menu ul ul { visibility:hidden;/*开始时是隐藏的*/ position:absolute; left:0px; top:3 ...

  2. C语言中free函数是如何确定要释放多少内存空间的

    本文链接:http://www.cnblogs.com/xxNote/p/4009359.html 今天看书的时候看到free函数释放动态申请的内存时只需要把内存块的首地址传过去就行了,显然仅仅依靠首 ...

  3. C++多线程的几个重要方法解析CreateEvent / SetEvent /ResetEvent/ 等

    1.CreateEvent 是创建windows事件的意思,作用主要用在判断线程退出,程锁定方面. 函功能描述:创建或打开一个命名的或无名的事件对象. HANDLE m_hExit; m_hExit= ...

  4. iOS开发——项目需求-快速回到当前界面的顶部

    利用UIWindow实现快速到达顶部 如下图,在状态栏添加一个没有颜色的UIWindow(里面添加一个按钮),实现点击这个按钮时能快速的回到当前界面的顶部 核心代码 一.利用UIWindow实现到达顶 ...

  5. BZOJ 1355: [Baltic2009]Radio Transmission

    Description 一个字符串最短周期. Sol KMP. 最短周期就是 \(n-next[n]\) 证明: 当该字符串不存在周期的时候 \(next[n]=0\) 成立. 当存在周期的时候 \( ...

  6. BZOJ 2654: tree

    Description \(n\) 个点, \(m\) 条边,边有权值和黑/白色,求含有 \(need\) 个白边的生成树. Sol 二分+Kruskal. 将每条白边都加上一个权值,然后跑最小生成树 ...

  7. python自动化之装饰器

    1 高阶函数 满足下列条件之一就可成函数为高阶函数 某一函数当做参数传入另一个函数中 函数的返回值包含n个函数,n>0 高阶函数示范 def bar(): print 'in the bar' ...

  8. flask路由和视图和cookie

    什么是路由 """ 客户端(例如web浏览器)把请求发送给Web服务器,Web服务器再把请求发送给Flask程序实例. 程序实例需要知道对每个URL请求运行那些代码,所以 ...

  9. ModelAndView的介绍

    ModelAndView的构造方法有7个.但是它们都是相通的.这里使用无参构造函数来举例说明如何构造ModelAndView实例. ModelAndView类别就如其名称所示,是代表了MVC Web程 ...

  10. 一个简单的log

    #pragma once #include <windows.h> #include <process.h> class CLogger { public: static CR ...