通过Spark SQL External Data Sources JDBC实现将RDD的数据写入到MySQL数据库中。

jdbc.scala重要API介绍:

/**
* Save this RDD to a JDBC database at `url` under the table name `table`.
* This will run a `CREATE TABLE` and a bunch of `INSERT INTO` statements.
* If you pass `true` for `allowExisting`, it will drop any table with the
* given name; if you pass `false`, it will throw if the table already
* exists.
*/
def createJDBCTable(url: String, table: String, allowExisting: Boolean) /**
* Save this RDD to a JDBC database at `url` under the table name `table`.
* Assumes the table already exists and has a compatible schema. If you
* pass `true` for `overwrite`, it will `TRUNCATE` the table before
* performing the `INSERT`s.
*
* The table must already exist on the database. It must have a schema
* that is compatible with the schema of this RDD; inserting the rows of
* the RDD in order via the simple statement
* `INSERT INTO table VALUES (?, ?, ..., ?)` should not fail.
*/
def insertIntoJDBC(url: String, table: String, overwrite: Boolean)
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._ val sqlContext = new SQLContext(sc)
import sqlContext._ #数据准备
val url = "jdbc:mysql://hadoop000:3306/test?user=root&password=root" val arr2x2 = Array[Row](Row.apply("dave", 42), Row.apply("mary", 222))
val arr1x2 = Array[Row](Row.apply("fred", 3))
val schema2 = StructType(StructField("name", StringType) :: StructField("id", IntegerType) :: Nil) val arr2x3 = Array[Row](Row.apply("dave", 42, 1), Row.apply("mary", 222, 2))
val schema3 = StructType(StructField("name", StringType) :: StructField("id", IntegerType) :: StructField("seq", IntegerType) :: Nil) import org.apache.spark.sql.jdbc._ ================================CREATE======================================
val srdd = sqlContext.applySchema(sc.parallelize(arr2x2), schema2) srdd.createJDBCTable(url, "person", false)
sqlContext.jdbcRDD(url, "person").collect.foreach(println)
[dave,42]
[mary,222] ==============================CREATE with overwrite========================================
val srdd = sqlContext.applySchema(sc.parallelize(arr2x3), schema3)
srdd.createJDBCTable(url, "person2", false)
sqlContext.jdbcRDD(url, "person2").collect.foreach(println)
[mary,222,2]
[dave,42,1] val srdd2 = sqlContext.applySchema(sc.parallelize(arr1x2), schema2)
srdd2.createJDBCTable(url, "person2", true)
sqlContext.jdbcRDD(url, "person2").collect.foreach(println)
[fred,3] ================================CREATE then INSERT to append======================================
val srdd = sqlContext.applySchema(sc.parallelize(arr2x2), schema2)
val srdd2 = sqlContext.applySchema(sc.parallelize(arr1x2), schema2)
srdd.createJDBCTable(url, "person3", false)
sqlContext.jdbcRDD(url, "person3").collect.foreach(println)
[mary,222]
[dave,42] srdd2.insertIntoJDBC(url, "person3", false)
sqlContext.jdbcRDD(url, "person3").collect.foreach(println)
[mary,222]
[dave,42]
[fred,3] ================================CREATE then INSERT to truncate======================================
val srdd = sqlContext.applySchema(sc.parallelize(arr2x2), schema2)
val srdd2 = sqlContext.applySchema(sc.parallelize(arr1x2), schema2) srdd.createJDBCTable(url, "person4", false)
sqlContext.jdbcRDD(url, "person4").collect.foreach(println)
[dave,42]
[mary,222] srdd2.insertIntoJDBC(url, "person4", true)
[fred,3] ================================Incompatible INSERT to append======================================
val srdd = sqlContext.applySchema(sc.parallelize(arr2x2), schema2)
val srdd2 = sqlContext.applySchema(sc.parallelize(arr2x3), schema3)
srdd.createJDBCTable(url, "person5", false)
srdd2.insertIntoJDBC(url, "person5", true)

java.sql.SQLException: Column count doesn't match value count at row 1

Spark SQL External Data Sources JDBC官方实现写测试的更多相关文章

  1. Spark SQL External Data Sources JDBC官方实现读测试

    在最新的master分支上官方提供了Spark JDBC外部数据源的实现,先尝为快. 通过spark-shell测试: import org.apache.spark.sql.SQLContext v ...

  2. Spark SQL External Data Sources JDBC简易实现

    在spark1.2版本中最令我期待的功能是External Data Sources,通过该API可以直接将External Data Sources注册成一个临时表,该表可以和已经存在的表等通过sq ...

  3. Spark SQL 之 Data Sources

    #Spark SQL 之 Data Sources 转载请注明出处:http://www.cnblogs.com/BYRans/ 数据源(Data Source) Spark SQL的DataFram ...

  4. Spark(3) - External Data Source

    Introduction Spark provides a unified runtime for big data. HDFS, which is Hadoop's filesystem, is t ...

  5. Spark SQL External DataSource简介

    随着Spark1.2的发布,Spark SQL开始正式支持外部数据源.这使得Spark SQL支持了更多的类型数据源,如json, parquet, avro, csv格式.只要我们愿意,我们可以开发 ...

  6. How to: Provide Credentials for the Dashboards Module when Using External Data Sources

    XAF中使用dashboard模块时,如果使用了sql数据源,可以使用此方法提供连接信息 https://www.devexpress.com/Support/Center/Question/Deta ...

  7. 【转载】Spark SQL之External DataSource外部数据源

    http://blog.csdn.net/oopsoom/article/details/42061077 一.Spark SQL External DataSource简介 随着Spark1.2的发 ...

  8. Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets Guide | ApacheCN

    Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession ...

  9. What’s new for Spark SQL in Apache Spark 1.3(中英双语)

    文章标题 What’s new for Spark SQL in Apache Spark 1.3 作者介绍 Michael Armbrust 文章正文 The Apache Spark 1.3 re ...

随机推荐

  1. app跳转

    iOS 从C APP里启动 D APP 首先在D APP里设置 URL Schemes 在info.plist 文件里添加URL Schemes URL Types -->item0 --> ...

  2. iOS 模拟器上录制Demo视频

    在App审核中会让用户上传一段简易的视频,那么如何制作改视频呢? 今天无意中在Cocochina 中看到 说利用QuickTime来制作,而QuickTime是操作系统自带的. 哦 My,God ! ...

  3. sqoop将关系型的数据库得数据导入到hbase中

    1.sqoop将关系数据库导入到hbase的参数说明

  4. Android Studio的一些快捷键

    以下这些也是百度的其他人整理的.后面有新的会加进来. AS的快捷键容易和QQ,微信等冲突,可以手动关掉或者修改其他软件的热键 Ctrl+G / Ctrl+Alt+Shift+G:查询变量或者函数或者类 ...

  5. GCD,用同步/异步函数,创建并发/串行队列

    队列  第一个参数:C语言字符串,标签 第二个参数: DISPATCH_QUEUE_CONCURRENT:并发队列 DISPATCH_QUEUE_SERIAL:串行队列 dispatch_queue_ ...

  6. Startup key combinations for Intel-based Macs

    Learn about the startup key combinations you can use with Intel-based Macs. You can use the followin ...

  7. G - YY's new problem(HUSH算法,目前还不懂什么是HUSH算法)

      Time Limit:4000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Pra ...

  8. PAT (Basic Level) Practise:1022. D进制的A+B

    [题目连接] 输入两个非负10进制整数A和B(<=230-1),输出A+B的D (1 < D <= 10)进制数. 输入格式: 输入在一行中依次给出3个整数A.B和D. 输出格式: ...

  9. oracle数据库--启动和关闭

    oracle--启动 oracle数据库的启动过程包含3个步骤:启动实例->加载数据库->打开数据库 分步骤启动过程可以对数据库进行不同的维护操作,对应我们不同的需求. 启动模式: 1.s ...

  10. 在Swift中应用Grand Central Dispatch(上)转载自的goldenfiredo001的博客

    尽管Grand Central Dispatch(GCD)已经存在一段时间了,但并非每个人都知道怎么使用它.这是情有可原的,因为并发很棘手,而且GCD本身基于C的API在 Swift世界中很刺眼. 在 ...