HDU 5738 Eureka
题目大意:
给出平面上的 $n$ 个点,每个点有唯一的标号(label),这 $n$ 个标号的集合记作 $S$,点可能重合。求满足下列条件的 $S$ 的子集 $T$ 的数目:
1. $|T|\ge 2$
2. $T$中的点共线
Solution:
只包含一种点的符合条件的子集 $T$ 的数目很容易计算,以下我们只考虑其中至少有两种不同(指坐标不同,下同)点的符合条件的子集$T$(以下简称子集)的数目。
考虑过两不同点 $u, v$ 的直线上的点,将这些点的集合记作 $P_{uv}$,考虑 $P_{uv}$ 的子集对答案的贡献 $C_{u,v}$ 。
设 $|P_{uv}|=k$,则 $C_{uv}=2^k-k-1-\text{single}(P_{uv})$,其中 $\text{single}(P_{uv})$ 指 $P_{uv}$ 的只包含一种点的子集 $T$ 的数目。
现在固定 $u$,计算一共能得到几个 $P_{uv}$。这可通过以 $u$ 为基点,对(去重后的)其他点作极角排序来做到。
以每个点为基点做一次极角排序,这样每个点集 $P_{uv}$ 都被重复计算了 $|P_{uv}|$ 次。
我们用 $f[k]$ 表示模为 $k$ 的点集 $P_k$ 出现的次数。这个次数被重复计算了$k$次,$P_k$出现的次数为$\frac{f[k]}{k}$
则所有$P_k$贡献的子集的数目为
\[\frac{f[k]}{k}(2^k-k-1)-\sum\limits_{P_k}\text{single}(P_k),\]
故总计数为
\[\sum_{k=2}^{n}{\frac{f[k]}{k} 2^k-(k+1)} -\sum_{k=2}^{n}{\sum\limits_{P_k}\text{single}(P_k)}\]
为了计算$\sum_{k=2}^{n}{\sum\limits_{P_k}\text{single}(P_k)}$,另外维护一个数组 $d$,$d[u]$ 表示 $u$ 在多少个点集 $P$ 中出现过。
从而有
\[\sum_{k=2}^{n}{\sum_{P_k}\text{single}(P_k)}=\sum_{u=1}^{m}d[u]*(2^{c[u]}-c[u]-1),\]
其中 $m$ 指去重后的点数,$c[u]$ 表示与 $u$ 重合的点数。
Implement:
#include <bits/stdc++.h>
using namespace std; const int N(1e3+);
typedef long long LL;
LL mod=1e9+; struct point{
LL x, y;
void read(){
scanf("%lld%lld", &x, &y);
}
point operator-(const point &b)const{
return {x-b.x, y-b.y};
}
point operator-(){
return {-x, -y};
}
bool operator==(const point &b)const{
return x==b.x && y==b.y;
}
bool operator<(const point &b)const{
return x==b.x?y<b.y:x<b.x;
}
void out(){
cout<<x<<' '<<y<<endl;
}
LL operator^(const point &p)const{
return x*p.y-y*p.x;
}
}a[N], slope[N]; bool cmp(const int &a, const int &b){
return (slope[a]^slope[b])<; //error-prone
} int cnt[N], b[N], dup[N]; LL num[N], p[N]={}; int main(){ int T, n;
for(int i=; i<=; i++) p[i]=(p[i-]<<)%mod; for(scanf("%d", &T); T--; ){
scanf("%d", &n);
for(int i=; i<n; i++)
a[i].read(); sort(a, a+n);
for(int i=, j=, k=; i<n; j++, k=i){
for(; i<n && a[i]==a[k]; i++);
cnt[j]=i-k;
} int e=unique(a, a+n)-a; memset(num, , sizeof(num));
memset(dup, , sizeof(dup)); for(int i=; i<e; i++){ for(int j=, k=; j<e; j++){
if(i==j) continue;
slope[j]=a[j]-a[i];
if(slope[j].x<) slope[j]=-slope[j];
else if(slope[j].x== && slope[j].y<) slope[j]=-slope[j];
b[k++]=j;
} sort(b, b+e-, cmp); for(int j=, k=, sum; j<e-; k=j){
for(sum=; j<e- && (slope[b[j]]^slope[b[k]])==; sum+=cnt[b[j++]]);
num[sum+cnt[i]]+=cnt[i]; //error-prone
dup[i]++;
}
} LL _dup=, res=; for(int i=; i<e; i++) _dup+=dup[i]*(p[cnt[i]]-cnt[i]-+mod), _dup%=mod;
for(int i=; i<e; i++) res+=p[cnt[i]]-cnt[i]-+mod, res%=mod;
for(int i=; i<=n; i++)
num[i]/=i, res+=num[i]*(p[i]-i-+mod), res%=mod;
res+=mod-_dup, res%=mod;
printf("%lld\n", res);
}
}
UPD
在以某个点为基点进行极角排序需要进行一个将待排序的向量规范化(formalization)的过程, 具体的说就是保证各向量满足:
x>0 或 x==0 && y>0 (待排序都是非零向量)
题解上给出的做法更好一些:
想将输入的点去重后,按照字典序排序, 然后从左到右扫, 当扫到第$i$个点$p_i$时我们统计由$p_i$及其右面的点构成的且一定包含$p_i$的共线子集的数目, 统计的方法和前面类似.
这样做的好处是
1. 向量自然规范化
2. 不重不漏
Implementation:
HDU 5738 Eureka的更多相关文章
- HDU 5738 Eureka 统计共线的子集个数
Eureka 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5738 Description Professor Zhang draws n poin ...
- HDU 5738 Eureka(极角排序)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5738 [题目大意] 给出平面中一些点,在同一直线的点可以划分为一个集合,问可以组成多少包含元素不少 ...
- hdu 5738 Eureka 极角排序+组合数学
Eureka Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Subm ...
- hdu 5738 2016 Multi-University Training Contest 2 Eureka 计数问题(组合数学+STL)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5738 题意:从n(n <= 1000)个点(有重点)中选出m(m > 1)个点(选出的点只 ...
- 2016 Multi-University Training Contest 2题解报告
A - Acperience HDU - 5734 题意: 给你一个加权向量,需要我们找到一个二进制向量和一个比例因子α,使得|W-αB|的平方最小,而B的取值为+1,-1,我们首先可以想到α为输入数 ...
- 2016 Multi-University Training Contest 2 - 1005 Eureka
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5738 题目大意:给定平面上的n个点,一个集合合法当且仅当集合中存在一对点u,v,对于集合中任意点w,均 ...
- HDU 3746:Cyclic Nacklace(KMP循环节)
Cyclic Nacklace Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDOJ 2111. Saving HDU 贪心 结构体排序
Saving HDU Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
随机推荐
- Block Chain, a protocol view
我做了个区块链的文档,给自己扫盲用的,有兴趣的可以看下,主要是自己画示意图比较好理解,示意图之后的专题部分,内容直接取自参考链接.网上的资料都是谈区块链有什么性质.有什么能力.有什么应用之类的,我主要 ...
- Qt学习笔记 信号和槽
槽和普通c++成员函数一样只可以为虚函数,也可以被重用,可以是公有的也可以是私有的,也可以被其它的c++函数调用; 参数也是任意的 唯一不同的是本槽和信号是可以连在一起的,和c#的事件差不多.相连后每 ...
- node 学习笔记 - Modules 模块加载系统 (1)
本文同步自我的个人博客:http://www.52cik.com/2015/12/11/learn-node-modules-path.html 用了这么久的 require,但却没有系统的学习过 n ...
- [转]Linux系统中‘dmesg’命令处理故障和收集系统信息的7种用法
'dmesg'命令显示linux内核的环形缓冲区信息,我们可以从中获得诸如系统架构.cpu.挂载的硬件,RAM等多个运行级别的大量的系统信息.当计算机启动时,系统内核(操作系统的核心部分)将会被加载到 ...
- Docker部署SDN环境
2014-12-03 by muzi Docker image = Java class Docker container = Java object 前言 5月份的时候,当我还是一个大学生的时候,有 ...
- Adaboost 算法的原理与推导
0 引言 一直想写Adaboost来着,但迟迟未能动笔.其算法思想虽然简单“听取多人意见,最后综合决策”,但一般书上对其算法的流程描述实在是过于晦涩.昨日11月1日下午,邹博在我组织的机器学习班第8次 ...
- 【JavaEE企业应用实战学习记录】getConnListener
Listener:当Web应用在Web容器中运行时,Web应用内部会不断地发生各种事件,如Web应用被启动.Web应用被停止,用户Session开始,用户session结束.用户请求到达等,这些对We ...
- iOS-- 重要的链接
面试题: http://www.jianshu.com/p/6a57c6e902e8 富文本: http://www.cnblogs.com/jys509/p/5018027.html
- Java的反射机制(Reflection)
反射机制 指可以在运动时加载.探知.使用编译期间完全未知的类 程序在运行状态中,可以动态加载一个只有名称的类,对于任意一个已加载的类,都能够获取这个类的属性和方法:对于任意一个对象可以调用它的任意一个 ...
- 【BZOJ 1877】【SDOI 2009】晨跑
拆点跑$MCMF最小费用最大流$ 复习一下$MCMF$模板啦啦啦--- 一些坑:更新$dist$后要接着更新$pre$,不要判断是否在队列中再更新,,,听不懂吧,听不懂就对了,因为只有我才会在这种错误 ...