[问题2014A05]  (1) 设 \(x_1,x_2\cdots,x_n,x\) 都是未定元, \(s_k=x_1^k+x_2^k+\cdots+x_n^k\,(k\geq 1)\), \(s_0=n\), 试求下列行列式的值:

\[|A|=\begin{vmatrix} s_0 & s_1 & \cdots & s_{n-1} & 1 \\ s_1 & s_2 & \cdots & s_n & x \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ s_n & s_{n+1} & \cdots & s_{2n-1} & x^n \end{vmatrix}.\]

(2) 设 \(A=(a_{ij})\) 为 \(n\) 阶方阵, 试求下列行列式的值:

\[\begin{vmatrix} a_{11} &  &  & a_{12} &  & \cdots &  & a_{1n} &  & \\  & \ddots &  &  & \ddots &  & \ddots &  & \ddots & \\  &  & a_{11} &  &  & a_{12} &   & \cdots &  & a_{1n} \\ a_{21} &  &  & a_{22} &  & \cdots &  & a_{2n} &  & \\  & \ddots &  &  & \ddots &  & \ddots &  & \ddots & \\  &  & a_{21} &  &  & a_{22} &  & \cdots &  & a_{2n} \\ \vdots &  \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} &  &  & a_{n2} &  & \cdots &  & a_{nn} &  & \\  & \ddots &  &  & \ddots &  & \ddots &  & \ddots & \\  &  & a_{n1} &  &  & a_{n2} &  & \cdots &  & a_{nn} \\ \end{vmatrix},\]

其中每个 \(a_{ij}\) 各重复 \(m\) 次.

[问题2014A05] 复旦高等代数 I(14级)每周一题(第七教学周)的更多相关文章

  1. [问题2015S01] 复旦高等代数 II(14级)每周一题(第二教学周)

    [问题2015S01]  设 \(M_n(\mathbb{R})\) 是 \(n\) 阶实方阵全体构成的实线性空间, \(\varphi\) 是 \(M_n(\mathbb{R})\) 上的线性变换, ...

  2. [问题2015S08] 复旦高等代数 II(14级)每周一题(第九教学周)

    [问题2015S08]  设 \(A\) 为 \(n\) 阶复方阵, 证明: \(A\overline{A}\) 与 \(\overline{A}A\) 相似, 其中 \(\overline{A}\) ...

  3. [问题2014A07] 复旦高等代数 I(14级)每周一题(第九教学周)

    [问题2014A07]  设 \(A\) 是有理数域 \(\mathbb{Q}\) 上的 4 阶方阵, \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 是 \(\mat ...

  4. [问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)

    问题2014S01  设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) ...

  5. [问题2014S09] 复旦高等代数II(13级)每周一题(第九教学周)

    [问题2014S09]  证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{d ...

  6. [问题2014S02] 复旦高等代数II(13级)每周一题(第二教学周)

    问题2014S02  设实系数多项式 \begin{eqnarray*}f(x) &=& a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, \\ g(x) ...

  7. [问题2015S06] 复旦高等代数 II(14级)每周一题(第七教学周)

    [问题2015S06]  设 \(V\) 是数域 \(\mathbb{K}\) 上的 \(n\) 维线性空间, \(\varphi\) 是 \(V\) 上的线性变换. (1) 求证: 对任一非零向量 ...

  8. [问题2014S07] 复旦高等代数II(13级)每周一题(第七教学周)

    [问题2014S07]  设 \(A\in M_n(\mathbb{K})\) 在数域 \(\mathbb{K}\) 上的初等因子组为 \(P_1(\lambda)^{e_1},P_2(\lambda ...

  9. 复旦高等代数I(19级)每周一题

    本学期的高等代数每周一题活动计划从第2教学周开始,到第15教学周结束,每周的周末公布一道思考题(共14道,思考题一般与下周授课内容密切相关),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博 ...

随机推荐

  1. vs2013如何在C++中调用Lua(二)

    Lua学习笔记 vs2013如何在C++中调用Lua (此为转载教程) 本人试过完全可行 一.准备工作 1.下载Lua源码,地址:http://www.lua.org/download.html(我用 ...

  2. generator自动生成mybatis配置和类信息

    generator自动生成mybatis的xml配置.model.map等信息: 1.下载mybatis-generator-core-1.3.2.jar包.        网址:http://cod ...

  3. Combination Lock

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Finally, you come to the interview room. You know that a Micr ...

  4. BLOB

    BLOB (binary large object),二进制大对象,是一个可以存储二进制文件的容器.在计算机中,BLOB常常是数据库中用来存储二进制文件的字段类型.BLOB是一个大文件,典型的BLOB ...

  5. XPath提取xml文档数据

    package itcast.dom4j; import java.io.File; import org.dom4j.Document; import org.dom4j.DocumentExcep ...

  6. 【7集iCore3基础视频】7-4 iCore3连接示意图

    iCore3连接示意图: 高清源视频:链接:http://pan.baidu.com/s/1hr7ucpY%20密码:473n iCore3 购买链接:https://item.taobao.com/ ...

  7. js中的text(),html() ,val()的区别

    js中的text(),html() ,val()的区别 text(),html() ,val()三个方法用于html元素的存值和取值,但是他们各有特点,text()用于html元素文本内容的存取,ht ...

  8. xcode 6 创建的工程上下有黑边

  9. IAR EW8051-8.10.4安装及破解方法

    第一步:获取破解license 1: 点击桌面左下角“开始”按钮,找到cmd.exe,右键创建cmd.exe 快捷方式到桌面: ————如果是windows7 ,请右键点击cmd.exe 快捷图标,点 ...

  10. 《Linux内核分析》第五周 扒开系统调用的三层皮(下)

    [刘蔚然 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000] WEEK FIVE( ...