已知椭圆$\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$($a > b > 0$),${F_1}$、${F_2}$为其左右焦点,$P$为椭圆$C$上任意一点,$I$为$\triangle P{F_1}{F_2}$内切圆圆心,点$G$满足$\overrightarrow {P{F_1}}+ \overrightarrow {P{F_2}}= 3\overrightarrow {PG} $且$\overrightarrow {GI}= \lambda \overrightarrow {{F_1}{F_2}} $($\lambda\in {\mathbb {R}}$且$\lambda\ne 0$),则椭圆的离心率是___

分析:如图,因为$\overrightarrow {GI}= \lambda \overrightarrow {{F_1}{F_2}} $,所以${y_G} = {y_I}=r,y_P=3y_G=3r$.

由$rp=S_{\Delta F_1F_2P},\textbf{其中}p\textbf{半周长}$,故$r*(a+c)=\dfrac{1}{2}|F_1F_2|y_P$
即$r*(a+c)=\dfrac{1}{2}*2a*3r$得$e=\dfrac{1}{2}$

MT【252】椭圆内接三角形内切圆半径的更多相关文章

  1. poj 3525 半平面交求多边形内切圆最大半径【半平面交】+【二分】

    <题目链接> 题目大意:给出一个四面环海的凸多边形岛屿,求出这个岛屿中的点到海的最远距离. 解题分析: 仔细思考就会发现,其实题目其实就是让我们求该凸多边形内内切圆的最大半径是多少.但是, ...

  2. css实现椭圆、半椭圆

    一.自适应的椭圆 1. 椭圆 css .ellipse{ width: 250px; height: 150px; margin: 50px; background: #FFD900; border- ...

  3. Python OpenCV4获取轮廓最大内切圆和外接圆

    为了方便讲解,我们先来创建一个多边形做演示 第一步:创建图像,并绘制一个六边形.代码和生成图像如下: # Create an image r = 100 src = np.zeros((4*r, 4* ...

  4. Summer training #2

    A:不管有没有负数 一顿操作之后肯定只有正数 又因为A=A-B 所以最大值是一直在减小的 所以一定有结果 B:..一开始以为求min操作数 WA了2发 直接求所有数的GCD如果所有数的GCD都不是1的 ...

  5. 探索性思维——How to Solve It

    我觉得这篇文章和什么都能扯上点关系,比如编程. 很多人已经讨论过数学与编程的关系了,这里不想过多探讨,只是简单提一下:有些人把数学贬低地一文不值,认为做一般的应用软件用不到数学:而有些人则把数学拔高到 ...

  6. Css背景渐变

    语法: background:linear-gradient( 渐变方向,起点颜色,终点颜色 ) 参数说明: 渐变方向:可以使用top,left,或者指定具体的角度(deg为单位),比如top是自上而 ...

  7. 快速上手RaphaelJS--Instant RaphaelJS Starter翻译(三)

    (目前发现一些文章被盗用的情况,我们将在每篇文章前面添加原文地址,本文源地址:http://www.cnblogs.com/idealer3d/p/Instant_RaphaelJS_Starter3 ...

  8. 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)

    按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...

  9. uestc_retarded 模板

    虽然这个队,以后再也没有了,但是他的模板,是永垂不朽的![误 #include <ext/pb_ds/priority_queue.hpp> __gnu_pbds::priority_qu ...

随机推荐

  1. Git远程分支的回退

    下午发现上午提交的一个版本有问题,在回退本地分支后,发现还必须要回退远程分支的版本.网上查找到的资料如下: #新建old_master分支做备份 git branch old_master #push ...

  2. Jmeter操作之跨线程组传递参数

    思路:将某一线程组内的变量通过“__setProperty”函数设置成jmeter的全局变量,在另一线程组中通过“__P”函数调用即可. 1.添加-后置处理器-BeanShell PostProces ...

  3. SOAP UI-----测webservice接口

    webservice的请求报文和返回报文都是xml格式的. 使用soapui.storm对webservice接口进行测试,postman无法测. http://www.webxml.com.cn/W ...

  4. 50分钟学会Laravel 50个小技巧(基于laravel5.2,仅供参考)

    转载请注明:转载自 Yuansir-web菜鸟 | LAMP学习笔记 本文链接地址: 50分钟学会Laravel 50个小技巧 原文链接:< 50 Laravel Tricks in 50 Mi ...

  5. 工作效率提升之Eclipse篇(1):干掉烦人的xml文件的validation

    每次启动maven项目,都会有一堆烦人的xml文件的validation,一旦网络较慢,项目重新启动的时候,这些多余的验证纯属浪费时间. Eclipse上取消validation的方法: 1.菜单[W ...

  6. python之路--MySQL数据库初识

    一 . MySQL安装 # 下载MySQL地址 https://dev.mysql.com/downloads # 要选稳定的,不要选最新的,稳定的就是半年以上没有出现过bug 现在5.6.43为绝大 ...

  7. django migrate报错(提前删除表等)

    python3 manage.py makemigrations python3 manage.py migrate ##报错 改为##更改migrates的状态 python3 manage.py ...

  8. Java线程的5种状态及切换(透彻讲解)-京东面试

    一.Thread的几个重要方法: 我们先了解一下Thread的几个重要方法. a.start()方法,开始执行该线程:b.stop()方法,强制结束该线程执行:c.join方法,等待该线程结束.d.s ...

  9. 如何在Mac系统安装MySQL

    方法一: (1)使用brew install mysql (2)使用mysql -uroot连接时报错: Authentication plugin 'caching_sha2_password' c ...

  10. dreamweavercs 和dreamweaver cc的區別

    https://zhidao.baidu.com/question/1541178469432885667.html