已知椭圆$\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$($a > b > 0$),${F_1}$、${F_2}$为其左右焦点,$P$为椭圆$C$上任意一点,$I$为$\triangle P{F_1}{F_2}$内切圆圆心,点$G$满足$\overrightarrow {P{F_1}}+ \overrightarrow {P{F_2}}= 3\overrightarrow {PG} $且$\overrightarrow {GI}= \lambda \overrightarrow {{F_1}{F_2}} $($\lambda\in {\mathbb {R}}$且$\lambda\ne 0$),则椭圆的离心率是___

分析:如图,因为$\overrightarrow {GI}= \lambda \overrightarrow {{F_1}{F_2}} $,所以${y_G} = {y_I}=r,y_P=3y_G=3r$.

由$rp=S_{\Delta F_1F_2P},\textbf{其中}p\textbf{半周长}$,故$r*(a+c)=\dfrac{1}{2}|F_1F_2|y_P$
即$r*(a+c)=\dfrac{1}{2}*2a*3r$得$e=\dfrac{1}{2}$

MT【252】椭圆内接三角形内切圆半径的更多相关文章

  1. poj 3525 半平面交求多边形内切圆最大半径【半平面交】+【二分】

    <题目链接> 题目大意:给出一个四面环海的凸多边形岛屿,求出这个岛屿中的点到海的最远距离. 解题分析: 仔细思考就会发现,其实题目其实就是让我们求该凸多边形内内切圆的最大半径是多少.但是, ...

  2. css实现椭圆、半椭圆

    一.自适应的椭圆 1. 椭圆 css .ellipse{ width: 250px; height: 150px; margin: 50px; background: #FFD900; border- ...

  3. Python OpenCV4获取轮廓最大内切圆和外接圆

    为了方便讲解,我们先来创建一个多边形做演示 第一步:创建图像,并绘制一个六边形.代码和生成图像如下: # Create an image r = 100 src = np.zeros((4*r, 4* ...

  4. Summer training #2

    A:不管有没有负数 一顿操作之后肯定只有正数 又因为A=A-B 所以最大值是一直在减小的 所以一定有结果 B:..一开始以为求min操作数 WA了2发 直接求所有数的GCD如果所有数的GCD都不是1的 ...

  5. 探索性思维——How to Solve It

    我觉得这篇文章和什么都能扯上点关系,比如编程. 很多人已经讨论过数学与编程的关系了,这里不想过多探讨,只是简单提一下:有些人把数学贬低地一文不值,认为做一般的应用软件用不到数学:而有些人则把数学拔高到 ...

  6. Css背景渐变

    语法: background:linear-gradient( 渐变方向,起点颜色,终点颜色 ) 参数说明: 渐变方向:可以使用top,left,或者指定具体的角度(deg为单位),比如top是自上而 ...

  7. 快速上手RaphaelJS--Instant RaphaelJS Starter翻译(三)

    (目前发现一些文章被盗用的情况,我们将在每篇文章前面添加原文地址,本文源地址:http://www.cnblogs.com/idealer3d/p/Instant_RaphaelJS_Starter3 ...

  8. 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)

    按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...

  9. uestc_retarded 模板

    虽然这个队,以后再也没有了,但是他的模板,是永垂不朽的![误 #include <ext/pb_ds/priority_queue.hpp> __gnu_pbds::priority_qu ...

随机推荐

  1. H5 17-兄弟选择器

    17-兄弟选择器 我是标题 我是超链接 我是段落 我是段落 我是段落 我是标题 我是段落 我是段落 我是段落 --> 我是标题 我是超链接 我是段落 我是段落 我是超链接 我是段落 我是标题 我 ...

  2. c++入门之命名空间存在的意义

    看过鸡啄米的C++编程入门系列教程的朋友,应该能注意到,在其中的很多实例中,都有这么一条语句:using namespace std;,即使用命名空间std,其作用就是规定该文件中使用的标准库函数都是 ...

  3. Python2和Python3中urllib库中urlencode的使用注意事项

    前言 在Python中,我们通常使用urllib中的urlencode方法将字典编码,用于提交数据给url等操作,但是在Python2和Python3中urllib模块中所提供的urlencode的包 ...

  4. 多线程系列之十:Future模式

    一,Future模式 假设有一个方法需要花费很长的时间才能获取运行结果.那么,与其一直等待结果,不如先拿一张 提货单.获取提货单并不耗费时间.这里提货单就称为Future角色获取Future角色的线程 ...

  5. 使用Dockerfile来构建镜像

    Dockerfile原理 创建Dockerfile Dockerfile实例 Dockerfile指令 注释 FROM MAINTAINER RUN ADD WORKDIR ENV USER COPY ...

  6. yum 命令

    yum( Yellow dog Updater, Modified)是一个在Fedora和RedHat以及SUSE中的Shell前端软件包管理器. 基於RPM包管理,能够从指定的服务器自动下载RPM包 ...

  7. python内涵段子爬取练习

    # -*- coding:utf-8 -*-from urllib import request as urllib2import re# 利用正则表达式爬取内涵段子url = r'http://ww ...

  8. React Native之FlatList的介绍与使用实例

    React Native之FlatList的介绍与使用实例 功能简介 FlatList高性能的简单列表组件,支持下面这些常用的功能: 完全跨平台. 支持水平布局模式. 行组件显示或隐藏时可配置回调事件 ...

  9. spring MVC请求处理类注解属性详解

  10. python爬虫之requests的基本使用

    简介 Requests是用python语言基于urllib编写的,采用的是Apache2 Licensed开源协议的HTTP库,Requests它会比urllib更加方便,可以节约我们大量的工作. 一 ...