题面

LOJ

题解

戳这里

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 222222
#define MOD 1000000007
ll n,Sqr,w[MAX];
ll pri[MAX],id1[MAX],id2[MAX],h[MAX],g[MAX],m;
bool zs[MAX];
int tot,sp[MAX];
void pre(int n)
{
zs[1]=true;
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i,sp[tot]=(sp[tot-1]+i)%MOD;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j]==0)break;
}
}
}
int S(ll x,int y)
{
if(x<=1||pri[y]>x)return 0;
int k=(x<=Sqr)?id1[x]:id2[n/x],ret=(g[k]-sp[y-1]-h[k]+y-1)%MOD;
if(y==1)ret+=2;
for(int i=y;i<=tot&&1ll*pri[i]*pri[i]<=x;++i)
{
ll t1=pri[i],t2=1ll*pri[i]*pri[i];
for(int e=1;t2<=x;++e,t1=t2,t2*=pri[i])
(ret+=((1ll*S(x/t1,i+1)*(pri[i]^e)%MOD+(pri[i]^(e+1))%MOD)))%=MOD;
}
return ret;
}
int main()
{
scanf("%lld",&n);Sqr=sqrt(n);
pre(Sqr);
for(ll i=1,j;i<=n;i=j+1)
{
j=n/(n/i);w[++m]=n/i;
h[m]=(w[m]-1)%MOD;
g[m]=(w[m]%MOD)*((w[m]+1)%MOD)%MOD;
if(g[m]&1)g[m]=g[m]+MOD;g[m]/=2;g[m]--;
if(w[m]<=Sqr)id1[w[m]]=m;
else id2[j]=m;
}
for(int j=1;j<=tot;++j)
for(int i=1;i<=m&&pri[j]*pri[j]<=w[i];++i)
{
int k=(w[i]/pri[j]<=Sqr)?id1[w[i]/pri[j]]:id2[n/(w[i]/pri[j])];
(g[i]-=1ll*pri[j]*(g[k]-sp[j-1])%MOD)%=MOD;
(h[i]-=h[k]-j+1)%=MOD;
}
int ans=S(n,1)+1;
printf("%d\n",(ans+MOD)%MOD);
return 0;
}

【LOJ6053】简单的函数(min_25筛)的更多相关文章

  1. LOJ.6053.简单的函数(Min_25筛)

    题目链接 Min_25筛见这里: https://www.cnblogs.com/cjyyb/p/9185093.html https://www.cnblogs.com/zhoushuyu/p/91 ...

  2. LOJ 6053 简单的函数——min_25筛

    题目:https://loj.ac/problem/6053 min_25筛:https://www.cnblogs.com/cjyyb/p/9185093.html 这里把计算 s( n , j ) ...

  3. 简单的函数——Min_25筛

    %%yyb %%zsy 就是实现一下Min-25筛 筛积性函数的操作 首先要得到 $G(M,j)=\sum_{t=j}^{cnt} \sum_{e=1}^{p_t^{e+1}<=M} [\phi ...

  4. loj 6053 简单的函数 —— min_25筛

    题目:https://loj.ac/problem/6053 参考博客:http://www.cnblogs.com/zhoushuyu/p/9187319.html 算 id 也可以不存下来,因为 ...

  5. LOJ6053 简单的函数 【Min_25筛】【埃拉托斯特尼筛】

    先定义几个符号: []:若方括号内为一个值,则向下取整,否则为布尔判断 集合P:素数集合. 题目分析: 题目是一个积性函数.做法之一是洲阁筛,也可以采用Min_25筛. 对于一个可以进行Min_25筛 ...

  6. LOJ6053 简单的函数(min_25筛)

    题目链接:LOJ 题目大意:从前有个积性函数 $f$ 满足 $f(1)=1,f(p^k)=p\oplus k$.(异或)求其前 $n$ 项的和对 $10^9+7$ 取模的值. $1\le n\le 1 ...

  7. [LOJ6053]简单的函数:Min_25筛

    分析 因为题目中所给函数\(f(x)\)的前缀和无法较快得出,考虑打表以下两个函数: \[ g(x)=x \times [x是质数] \] \[ h(x)=1 \times [x是质数] \] 这两个 ...

  8. LOJ6053 简单的函数

    题目传送门 分析: 对于这道题来说,当\(x\)为质数时: \(~~~~f(x)=x-1+2[x=2]\) 因为除2以外的质数都是奇数,它们与1异或就是减一,然后2就是加一 然后我们先来康康怎么快速求 ...

  9. Min_25 筛

    Min_25 筛 yyb好神仙啊 干什么用的 可以在\(O(\frac{n^{\frac 34}}{\log n})\)的时间内求积性函数\(f(x)\)的前缀和. 别问我为什么是这个复杂度 要求\( ...

  10. [算法]Min_25筛

    前言 本篇文章中使用的字母\(p\),指\(\text{任意的} p \in \text{素数集合}\) 应用场景 若函数\(f(x)\)满足, \(f(x)\)是积性函数 \(f(p)\)可以使用多 ...

随机推荐

  1. java得到日期相减的天数

    /** * <li>功能描述:时间相减得到天数 * @param beginDateStr * @param endDateStr * @return * long * @author A ...

  2. Linux之磁盘挂载

    1.查看磁盘分区情况: fdisk -l 可以看到,红框中的硬盘没有分区. 2.开始分区: fdisk /dev/vdb 3.格式化分区: mkfs.xfs 分区名 4.挂载磁盘 挂载方式1: 手动挂 ...

  3. Git使用过程中的问题

    Q-1:怎么切换到远程的分支 本地已经有一个代码库了(是从github上clone的),但是现在远程库中一个新的branch,怎么拉取远程分支,并在本地创建该分支(内容一样).how to do? # ...

  4. Python爬虫——用BeautifulSoup、python-docx爬取廖雪峰大大的教程为word文档

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 廖雪峰大大贡献的教程写的不错,写了个爬虫把教程保存为word文件,供大家方便下载学习:http://p ...

  5. MySQL 的两个特殊属性 unsigned与 zerofill

    1 unsigned unsigned 就是将数字类型无符号化, 例如 int 型的范围:-2^31 ~ 2^31 - 1,而unsigned int的范围:0 ~ 2^32.看起来unsigned ...

  6. MySQL unknown variable 'default-character-set=utf8'的解决

    Windows07 安装了MySQL-server-5.5,直接在命令行输入net start mysql ,启动mysql成功, 然后修改/MySQL Server 5.5/my.ini,增加了de ...

  7. PhpStorm 头部注释、类注释和函数注释的设置

    *设置位置:"Settings"->"file templates"; 如下图,设置头部注释.类注释以及函数注释,时间.用户名.文件名称等随机改变的属性, ...

  8. iframe全屏显示

    <iframe webkitallowfullscreen="" mozallowfullscreen="" allowfullscreen=" ...

  9. 使用mysqlbinlog恢复数据

    前提:mysql数据库开启了binlog日志,并且有对应的日志文件 起因:今天由于同事对数据库的误操作不小心删除了一条数据 方法一:通过binlog日志文件恢复数据 通过mysqlbinlog恢复My ...

  10. EmpireCMS的使用

    1.下载安装empirecms 下载完成后解压将upload目录整体上传到服务器,并更名为empirecms_test 更改目录文件的权限: chmod -R 777 empirecms_test 配 ...