题面

LOJ

题解

戳这里

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 222222
#define MOD 1000000007
ll n,Sqr,w[MAX];
ll pri[MAX],id1[MAX],id2[MAX],h[MAX],g[MAX],m;
bool zs[MAX];
int tot,sp[MAX];
void pre(int n)
{
zs[1]=true;
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i,sp[tot]=(sp[tot-1]+i)%MOD;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j]==0)break;
}
}
}
int S(ll x,int y)
{
if(x<=1||pri[y]>x)return 0;
int k=(x<=Sqr)?id1[x]:id2[n/x],ret=(g[k]-sp[y-1]-h[k]+y-1)%MOD;
if(y==1)ret+=2;
for(int i=y;i<=tot&&1ll*pri[i]*pri[i]<=x;++i)
{
ll t1=pri[i],t2=1ll*pri[i]*pri[i];
for(int e=1;t2<=x;++e,t1=t2,t2*=pri[i])
(ret+=((1ll*S(x/t1,i+1)*(pri[i]^e)%MOD+(pri[i]^(e+1))%MOD)))%=MOD;
}
return ret;
}
int main()
{
scanf("%lld",&n);Sqr=sqrt(n);
pre(Sqr);
for(ll i=1,j;i<=n;i=j+1)
{
j=n/(n/i);w[++m]=n/i;
h[m]=(w[m]-1)%MOD;
g[m]=(w[m]%MOD)*((w[m]+1)%MOD)%MOD;
if(g[m]&1)g[m]=g[m]+MOD;g[m]/=2;g[m]--;
if(w[m]<=Sqr)id1[w[m]]=m;
else id2[j]=m;
}
for(int j=1;j<=tot;++j)
for(int i=1;i<=m&&pri[j]*pri[j]<=w[i];++i)
{
int k=(w[i]/pri[j]<=Sqr)?id1[w[i]/pri[j]]:id2[n/(w[i]/pri[j])];
(g[i]-=1ll*pri[j]*(g[k]-sp[j-1])%MOD)%=MOD;
(h[i]-=h[k]-j+1)%=MOD;
}
int ans=S(n,1)+1;
printf("%d\n",(ans+MOD)%MOD);
return 0;
}

【LOJ6053】简单的函数(min_25筛)的更多相关文章

  1. LOJ.6053.简单的函数(Min_25筛)

    题目链接 Min_25筛见这里: https://www.cnblogs.com/cjyyb/p/9185093.html https://www.cnblogs.com/zhoushuyu/p/91 ...

  2. LOJ 6053 简单的函数——min_25筛

    题目:https://loj.ac/problem/6053 min_25筛:https://www.cnblogs.com/cjyyb/p/9185093.html 这里把计算 s( n , j ) ...

  3. 简单的函数——Min_25筛

    %%yyb %%zsy 就是实现一下Min-25筛 筛积性函数的操作 首先要得到 $G(M,j)=\sum_{t=j}^{cnt} \sum_{e=1}^{p_t^{e+1}<=M} [\phi ...

  4. loj 6053 简单的函数 —— min_25筛

    题目:https://loj.ac/problem/6053 参考博客:http://www.cnblogs.com/zhoushuyu/p/9187319.html 算 id 也可以不存下来,因为 ...

  5. LOJ6053 简单的函数 【Min_25筛】【埃拉托斯特尼筛】

    先定义几个符号: []:若方括号内为一个值,则向下取整,否则为布尔判断 集合P:素数集合. 题目分析: 题目是一个积性函数.做法之一是洲阁筛,也可以采用Min_25筛. 对于一个可以进行Min_25筛 ...

  6. LOJ6053 简单的函数(min_25筛)

    题目链接:LOJ 题目大意:从前有个积性函数 $f$ 满足 $f(1)=1,f(p^k)=p\oplus k$.(异或)求其前 $n$ 项的和对 $10^9+7$ 取模的值. $1\le n\le 1 ...

  7. [LOJ6053]简单的函数:Min_25筛

    分析 因为题目中所给函数\(f(x)\)的前缀和无法较快得出,考虑打表以下两个函数: \[ g(x)=x \times [x是质数] \] \[ h(x)=1 \times [x是质数] \] 这两个 ...

  8. LOJ6053 简单的函数

    题目传送门 分析: 对于这道题来说,当\(x\)为质数时: \(~~~~f(x)=x-1+2[x=2]\) 因为除2以外的质数都是奇数,它们与1异或就是减一,然后2就是加一 然后我们先来康康怎么快速求 ...

  9. Min_25 筛

    Min_25 筛 yyb好神仙啊 干什么用的 可以在\(O(\frac{n^{\frac 34}}{\log n})\)的时间内求积性函数\(f(x)\)的前缀和. 别问我为什么是这个复杂度 要求\( ...

  10. [算法]Min_25筛

    前言 本篇文章中使用的字母\(p\),指\(\text{任意的} p \in \text{素数集合}\) 应用场景 若函数\(f(x)\)满足, \(f(x)\)是积性函数 \(f(p)\)可以使用多 ...

随机推荐

  1. python3 操作页面上各种元素的方法

    (1)       控制浏览器 ①控制浏览器窗口大小set_window_size(宽,高) 打开浏览器全屏maximize_window() ②控制浏览器后退back().前进forward() ③ ...

  2. ES7的新特性

    ES7的新特性 ES7 特性: 1.Array.prototype.includes2.Exponentiation Operator(求幂运算) 一,Array.prototype.includes ...

  3. Spring中RedirectAttributes的用法

    RedirectAttributes 是Spring mvc 3.1版本之后出来的一个功能,专门用于重定向之后还能带参数跳转的的工具类.他有两种带参的方式: 第一种: redirectAttribut ...

  4. vue的定位

    高德定位 https://blog.csdn.net/YY110621/article/details/87921605(copy) 话不多说,直接写方法步骤,需要的直接拿去放在自己项目中即可使用先看 ...

  5. Java多线程之线程状态转换图

    说明:线程共包括以下5种状态.1. 新建状态(New)         : 线程对象被创建后,就进入了新建状态.例如,Thread thread = new Thread().2. 就绪状态(Runn ...

  6. 解决Safari页面缓存的问题

    在开发一个移动应用的过程中,遇到问题:在订单确认页,用户点击 收货地址链接,跳转到地址选择页面,咋选一个地址,跳转回订单确认页,发现收货地址没有改变,还是最开始的地址. 用Android手机发现地址有 ...

  7. nginx 负载均衡(默认算法)

    使用 nginx 的upstream模块只需要几步就可以实现一个负载均衡: 在 nginx 配置文件中添加两个server server { listen ; server_name 192.168. ...

  8. react事件绑定,事件传参,input单向数据绑定

    import React, { Component } from 'react'; class New extends Component { constructor(props){ super(pr ...

  9. Mayor's posters(线段树+离散化)

    这道题最关键的点就在离散化吧. 假如有三张海报[1, 10] [10, 13][15,  20] 仅仅三个区间就得占用到20了. 但是离散化后就可以是[1, 2] [2, 3] [4, 5] n到1e ...

  10. Java 设计模式 ------ 模板设计模式

    模板设计模式主要来源于生活中有一些事情是有模板可以遵循的.举两个生活中的例子,如泡茶和泡咖啡,看一看. 泡茶有以下四个步骤:  1, 烧开水;  2 把茶放到水杯中; 3,倒入开水; 4, 加糖. 泡 ...