题目链接

F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3)

现在要求F[N]

类似于斐波那契数列的递推式子吧, 但是N最大能到int的最大值, 直接循环推解不了

所以就得用矩阵快速幂咯

现在就看转移矩阵长什么样了

Mi表示要求的矩阵 转移矩阵用A表示

A * Mi = Mi+1

矩阵Mi里面至少得有 F[i-1] F[i-2] i ^ 4 Mi+1就相应的有 F[i] F[i-1] (i+1)^4

(i+1)^4 = i^4 + 4 * i ^ 3 + 6 * i ^ 2 + 4 * i + 1

所以Mi中还得有i^3 i^2 i 1

总共就有七个元素

$\begin{pmatrix} 1 & 2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0& 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 4 & 6 & 4 & 1 \\ 0 & 0 & 0 & 1 & 3 & 3 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1\end{pmatrix}
\times \begin{pmatrix} f_{i-1} \\ f_{i-2} \\ i^{4} \\ i^{3} \\ i^{2} \\ i \\ 1 \end{pmatrix} = \begin{pmatrix} f_{i} \\ f_{i-1} \\ (i+1)^{4} \\ (i+1)^{3} \\ (i+1)^{2} \\ i+1 \\ 1 \end{pmatrix}$

基本的矩阵运算,就是前面这个相当于系数的矩阵得是 (n-2)次幂 因为f1 f2都求过了

初始的矩阵是

$\begin{pmatrix} f_{2} \\ f_{1} \\ 3^{4} \\ 3^{3} \\ 3^{2} \\ 3 \\ 1 \end{pmatrix}$

也就是

$\begin{pmatrix} b \\ a \\ 81 \\ 27 \\ 9 \\ 3 \\ 1 \end{pmatrix}$

特判一下n == 1 和 2的情况就好啦

代码如下

#include <cstdio>
#define ll long long
#define MOD 2147493647
using namespace std; struct Matrix {
ll m[][];
Matrix() {
for (int i = ; i < ; i++)
for (int j = ; j < ; j++)
m[i][j] = ;
}
}; Matrix mul(Matrix A, Matrix B) {
Matrix temp;
for (int i = ; i < ; i++)
for (int j = ; j < ; j++)
for (int k = ; k < ; k++)
temp.m[i][j] = (temp.m[i][j] % MOD+ A.m[i][k] * B.m[k][j] % MOD) % MOD;
return temp;
} Matrix quick_mod(Matrix A, ll b) {
Matrix ans;
for (int i = ; i < ; i++)
ans.m[i][i] = ;
while (b) {
if (b & ) ans = mul(ans, A);
A = mul(A, A);
b >>= ;
}
return ans;
} int main() {
int T; scanf("%d", &T);
while (T--) {
int n, a, b;
scanf("%d%d%d", &n, &a, &b);
if (n == ) printf("%d\n", a);
else if (n == ) printf("%d\n", b);
else {
Matrix ans;
ans.m[][] = , ans.m[][] = , ans.m[][] = ;
ans.m[][] = ;
ans.m[][] = , ans.m[][] = , ans.m[][] = , ans.m[][] = , ans.m[][] = ;
ans.m[][] = , ans.m[][] = , ans.m[][] = , ans.m[][] = ;
ans.m[][] = , ans.m[][] = , ans.m[][] = ;
ans.m[][] = , ans.m[][] = , ans.m[][] = ;
ans = quick_mod(ans, (ll)n - );
Matrix temp;
temp.m[][] = b, temp.m[][] = a, temp.m[][] = , temp.m[][] = ;
temp.m[][] = , temp.m[][] = , temp.m[][] = ;
ans = mul(ans, temp);
printf("%lld\n", ans.m[][] % MOD);
}
}
return ;
}

其实可以封装一下Matrix 重载一下 * 和 ^ 运算符 这样就很方便也很好看啦

Recursive sequence HDU - 5950 (递推 矩阵快速幂优化)的更多相关文章

  1. hdu 2604 递推 矩阵快速幂

    HDU 2604 Queuing (递推+矩阵快速幂) 这位作者讲的不错,可以看看他的 #include <cstdio> #include <iostream> #inclu ...

  2. HDU 2842 (递推+矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...

  3. hdu 6185 递推+矩阵快速幂

    思路:考虑全部铺满时,前2列的放法.有如下5种情况:(转自http://blog.csdn.net/elbadaernu/article/details/77825979 写的很详细 膜一下)  假设 ...

  4. 2018.10.09 NOIP模拟 路途(递推+矩阵快速幂优化)

    传送门 签到题.(考试的时候写挂爆0) 令AiA_iAi​表示邻接矩阵的iii次幂. 于是就是求Al+Al+1+...+ArA_l+A_{l+1}+...+A_rAl​+Al+1​+...+Ar​. ...

  5. HDU Queuing(递推+矩阵快速幂)

    Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  6. HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  7. LightOJ 1244 - Tiles 猜递推+矩阵快速幂

    http://www.lightoj.com/volume_showproblem.php?problem=1244 题意:给出六种积木,不能旋转,翻转,问填充2XN的格子有几种方法.\(N < ...

  8. [hdu 2604] Queuing 递推 矩阵快速幂

    Problem Description Queues and Priority Queues are data structures which are known to most computer ...

  9. HDU - 6185 Covering(暴搜+递推+矩阵快速幂)

    Covering Bob's school has a big playground, boys and girls always play games here after school. To p ...

随机推荐

  1. bootstraptable 分页查询

    1.前端配置 2.后台输出格式化数据 1.前端配置 @{ Layout = null; } <!DOCTYPE html> <html> <head> <me ...

  2. ASP.NET Core - 关于Tag Helper值得了解的五点

    如果您开发过ASP.NET Core Web应用程序,您应该已经熟悉了Tag Helper.ASP.NET Core应用程序依赖Tag Helper来呈现表单和表单字段是很常见的.所以,一个视图通常包 ...

  3. Generative Adversarial Nets[Wasserstein GAN]

    本文来自<Wasserstein GAN>,时间线为2017年1月,本文可以算得上是GAN发展的一个里程碑文献了,其解决了以往GAN训练困难,结果不稳定等问题. 1 引言 本文主要思考的是 ...

  4. Java内存模型与线程安全

    原文链接:blog.edreamoon.com Java内存模型 计算机cpu的运算能力强大,但是数据的存储相对于cpu运算能力需要消耗大量时间,为了充分利用运算能力引入了缓存,但是也为计算机系统带来 ...

  5. LDAP2-创建OU创建用户

    创建OU创建用户 1.创建OU 选择Organisational unit 组织单元 输入OU名称 提交信息 结果创建成功 2.创建员工 选择ou选择新建子条目 选择默认模板 选择inetorgper ...

  6. java eclipse jdk 关系

    java 经常用到多个jdk版本 1.7   1.8.... 兼容时几个位置 处理 eclipse.ini (A处) #-vm#C:\Program Files\Java\jdk1.7.0_79\bi ...

  7. java 基础 动态绑定和多态

  8. 图解HTTP,TCP,IP,MAC的关系

    入门 用户发了一个HTTP的请求,想要访问我们网站的首页,这个HTTP请求被放在一个TCP报文中,再被放到一个IP数据报中,最终的目的地就是我们的115.39.19.22. 进阶 IP数据报其实是通过 ...

  9. nrf2401 - 最廉价的2.4G无线通信方案

    所有的使用Arduino 的朋友大多都会知道大名鼎鼎的XBee 这个土豪级的ZigBee 的通信模块.我们是做产品开发的,对于XBee这个产品可谓是又爱又恨,不得不承认他确实是一个好货,从做工到功能都 ...

  10. spark 2.3 导致driver OOM的一个SparkPlanGraphWrapper源码的bug

    背景 长话短说,我们部门一个同事找到我,说他的spark 2.3 structured streaming程序频繁报OOM,从来没有坚持过超过三四天的,叫帮看一下. 这种事情一般我是不愿意看的,因为大 ...