NOIP2015提高组复赛B 子串
题目链接:https://ac.nowcoder.com/acm/contest/263/B
题目大意:
略
分析:
设preA(i)为字符串A中第1个字符到第i个字符构成的字符串。
设preB(i)为字符串B中第1个字符到第i个字符构成的字符串。
设所要解决的问题为problem(A, B, k)。
设dp[i][j][h]为problem(preA(i), preB(j), h)的答案。
于是problem(A, B, k)的答案就是dp[n][m][k]。
以下几种情况是容易得知的:
当 j == 0 && h == 0时,dp[i][0][0] = 1,这是因为在preA(i)中选0个子串只有一种选法,连起来是空串,preB(0)也是空串。
当 i < h 时,即preA(i)选不出h个子串时,dp[i][j][h] = 0。
当 i < j 时,即preA(i)长度小于preB(j)时,dp[i][j][h] = 0。
当 h > j 时,即所需要选的子串数目大于于preB(j)时,dp[i][j][h] = 0,因为每个字串至少贡献一个长度。
当 j != 0 && h == 0时,由于preB(j)不是空串,所以dp[i][j][h] = 0。
现在开始推dp[i + 1][j][h]的递推关系(由于上面所述的情况,i = 0时候的所有情况都是已知的,所以很自然地想要用i去推i + 1):
作为A[i + 1]这个新加进来的字符,有2种情况:
1:A[i + 1] != B[j],这种情况下A[i + 1]并不会对答案有所贡献,有和没有一样,所以dp[i + 1][j][h] = dp[i][j][h]。
2:A[i + 1] == B[j],这种情况下dp[i + 1][j][h]的构成分为3种:
(1):不选A[i + 1],这和A[i + 1] != B[j]一样,dp[i + 1][j][h] = dp[i][j][h]。
(2):单独选A[i + 1],这时dp[i + 1][j][h] = dp[i][j - 1][h - 1]。
(3):A[i + 1]是和A[i]一起被选上的,这种情况下和单选选A[i + 1]差不多,不过h不用减,又因为dp[i][j - 1][h]里面还包含A[i + 1]和A[i]不一起的情况,即没选A[i]的情况,要减去这种情况,所以答案为dp[i + 1][j][h] = dp[i][j - 1][h] - dp[i - 1][j - 1][h]。
注意点:数组直接开3维会爆内存,应该用滚动数组。
70分代码如下(超内存):
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
using namespace std; #define INIT() std::ios::sync_with_stdio(false);std::cin.tie(0);
#define Rep(i,n) for (int i = 0; i < (n); ++i)
#define For(i,s,t) for (int i = (s); i <= (t); ++i)
#define rFor(i,t,s) for (int i = (t); i >= (s); --i)
#define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
#define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
#define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
#define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) #define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl #define LOWBIT(x) ((x)&(-x)) #define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin()) #define ms0(a) memset(a,0,sizeof(a))
#define msI(a) memset(a,inf,sizeof(a))
#define msM(a) memset(a,-1,sizeof(a)) #define MP make_pair
#define PB push_back
#define ft first
#define sd second template<typename T1, typename T2>
istream &operator>>(istream &in, pair<T1, T2> &p) {
in >> p.first >> p.second;
return in;
} template<typename T>
istream &operator>>(istream &in, vector<T> &v) {
for (auto &x: v)
in >> x;
return in;
} template<typename T1, typename T2>
ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
out << "[" << p.first << ", " << p.second << "]" << "\n";
return out;
} typedef long long LL;
typedef unsigned long long uLL;
typedef pair< double, double > PDD;
typedef set< int > SI;
typedef vector< int > VI;
const double EPS = 1e-;
const int inf = 1e9 + ;
const LL mod = 1e9 + ;
const int maxN = 1e5 + ;
const LL ONE = ; int n, m, k;
string A, B;
LL dp[][][]; void solve() {
For(i, , n) {
For(j, , m) {
For(h, , k) {
if(j == && h == ) dp[i][j][h] = ;
else if(i < h || i < j || h > j || h == ) dp[i][j][h] = ;
else if(A[i] == B[j]) {
dp[i][j][h] += dp[i - ][j][h]; // 不选A[i]
dp[i][j][h] %= mod;
dp[i][j][h] += dp[i - ][j - ][h - ]; // 单独选A[i]
dp[i][j][h] %= mod;
if(i >= ) {
// A[i]和A[i - 1]连着的情况
dp[i][j][h] += dp[i - ][j - ][h]; // 先加一下所有不单独选A[i]的情况
dp[i][j][h] %= mod;
dp[i][j][h] -= dp[i - ][j - ][h]; // 再减去不连着的情况
dp[i][j][h] += mod;
dp[i][j][h] %= mod;
}
dp[i][j][h] %= mod;
}
else if(A[i] != B[j]) dp[i][j][h] = dp[i - ][j][h];
}
}
} } int main(){
INIT();
cin >> n >> m >> k >> A >> B;
A.insert(, "#"); //< 让下标从1开始
B.insert(, "#"); solve(); cout << dp[n][m][k] << endl;
return ;
}
100分代码如下:
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
using namespace std; #define INIT() std::ios::sync_with_stdio(false);std::cin.tie(0);
#define Rep(i,n) for (int i = 0; i < (n); ++i)
#define For(i,s,t) for (int i = (s); i <= (t); ++i)
#define rFor(i,t,s) for (int i = (t); i >= (s); --i)
#define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
#define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
#define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
#define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) #define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl #define LOWBIT(x) ((x)&(-x)) #define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin()) #define ms0(a) memset(a,0,sizeof(a))
#define msI(a) memset(a,inf,sizeof(a))
#define msM(a) memset(a,-1,sizeof(a)) #define MP make_pair
#define PB push_back
#define ft first
#define sd second template<typename T1, typename T2>
istream &operator>>(istream &in, pair<T1, T2> &p) {
in >> p.first >> p.second;
return in;
} template<typename T>
istream &operator>>(istream &in, vector<T> &v) {
for (auto &x: v)
in >> x;
return in;
} template<typename T1, typename T2>
ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
out << "[" << p.first << ", " << p.second << "]" << "\n";
return out;
} typedef long long LL;
typedef unsigned long long uLL;
typedef pair< double, double > PDD;
typedef set< int > SI;
typedef vector< int > VI;
const double EPS = 1e-;
const int inf = 1e9 + ;
const LL mod = 1e9 + ;
const int maxN = 1e5 + ;
const LL ONE = ; int n, m, k;
string A, B;
LL dp[][][]; void solve() {
For(i, , n) {
For(j, , m) {
For(h, , k) {
dp[i % ][j][h] = ; // 归零
if(j == && h == ) dp[i % ][j][h] = ;
else if(i < h || i < j || h > j || h == ) dp[i % ][j][h] = ;
else if(A[i] == B[j]) {
dp[i % ][j][h] += dp[(i - ) % ][j][h]; // 不选A[i]
dp[i % ][j][h] += dp[(i - ) % ][j - ][h - ]; // 单独选A[i]
if(i >= ) {
// A[i]和A[i - 1]连着的情况
dp[i % ][j][h] += dp[(i - ) % ][j - ][h]; // 先加一下所有不单独选A[i]的情况
dp[i % ][j][h] -= dp[(i - ) % ][j - ][h]; // 再减去不连着的情况
dp[i % ][j][h] += mod;
}
}
else if(A[i] != B[j]) dp[i % ][j][h] = dp[(i - ) % ][j][h];
dp[i % ][j][h] %= mod;
}
}
}
} int main(){
INIT();
cin >> n >> m >> k >> A >> B;
A.insert(, "#"); //< 让下标从1开始
B.insert(, "#"); solve(); cout << dp[n % ][m][k] << endl;
return ;
}
NOIP2015提高组复赛B 子串的更多相关文章
- 【题解】NOIP2015提高组 复赛
[题解]NOIP2015提高组 复赛 传送门: 神奇的幻方 \([P2615]\) 信息传递 \([P2661]\) 斗地主 \([P2668]\) 跳石头 \([P2678]\) 子串 \([P26 ...
- 洛谷-神奇的幻方-NOIP2015提高组复赛
题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,--,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. ...
- 冲刺NOIP2015提高组复赛模拟试题(五)2.道路修建
2.道路修建 描述 Description liouzhou_101最悲痛的回忆就是NOI2011的道路修建,当时开了系统堆栈,结果无限RE… 出于某种报复心理,就把那题神奇了一下: 在 Z星球上有N ...
- 冲刺NOIP2015提高组复赛模拟试题(五) 3.破坏基地
3.破坏基地 描述 Description 在Z国和W国之间一直战火不断. 好不容易,W国的间谍把完整的Z国的军事基地的地图到手了. 于是W国决定再次出击,一举击破Z国的防线. W国认真研究了Z国的地 ...
- 冲刺NOIP2015提高组复赛模拟试题(五)1.数学作业
1. 数学作业 [问题描述] 路人丙的数学老师非常乏力,他喜欢出一些非常乏力的数学题来为难乏力的学生们.这次数学老师布置了一堆的数学题作为作业,而且这些数学题有个共同的特点是都求C(N,M)中不同质因 ...
- 刷题总结——子串(NOIP2015提高组)
题目: 题目背景 NOIP2015 提高组 Day2 T2 题目描述 有两个仅包含小写英文字母的字符串 A 和 B .现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在 ...
- [NOIP2015] 提高组 洛谷P2615 神奇的幻方
题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. ...
- NOIP 2015提高组复赛
神奇的幻方 题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第 ...
- 洛谷 P2678 & [NOIP2015提高组] 跳石头
题目链接 https://www.luogu.org/problemnew/show/P2678 题目背景 一年一度的“跳石头”比赛又要开始了! 题目描述 这项比赛将在一条笔直的河道中进行,河道中分布 ...
随机推荐
- 2.05-random-uesr-proxy
import urllib.request def proxy_user(): proxy_list = [ {"https":""}, # {"ht ...
- 安利一个_Java学习笔记总结
javaIO 字符编码 多线程 线程池 ArrayList遍历方式 LinkedList遍历方式 Vector遍历方式 Vector, ArrayList, LinkedList 的区别是什么? Ha ...
- centos下安装 glances 的问题
开始想安装htop 然后 yum installhtop 没有 yum searchhtop 也没有 然后上github 发现一个比htop还华丽的东西. Glances 大概这个样子的. 可以一览 ...
- mysql-备份数据库脚本
备份数据库脚本,包括单库,全库备份脚本 #!/bin/bashc_user=rootc_password=12345678c_date=`date +"%Y%m%d"`c_dir= ...
- Linux shell判断文件和文件夹是否存在(转发)
#!/bin/sh myPath="/var/log/httpd/" myFile="/var /log/httpd/access.log" #这里的-x 参数 ...
- 【转】wamp出现You don’t have permission to access/on this server提示
本地搭建wamp,输入http://127.0.0.1访问正常,当输入http://localhost/,apache出现You don't have permission to access/on ...
- 如果redis没有设置expire,他是否默认永不过期?
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/soulmate_P/article/details/81136054如果没有设置有效期,即使内存用完 ...
- docker 9 docker的容器命令
有镜像才能创建容器,这是根本的前提 下面我们以下载一个centos镜像来做演示. [root@t-docker chenzx]# docker images REPOSITORY TAG IMAGE ...
- python魔法方法、构造函数、序列与映射、迭代器、生成器
在Python中,所有以__双下划线包起来的方法,都统称为"魔术方法".比如我们接触最多的__init__,魔法方法也就是具有特殊功能的方法. 构造函数 构造函数不同于普通方法,将 ...
- Linux 下配置zookeeper集群
我们首先准备三台服务器,IP地址分别如下(前提是要先安装JDK) 192.168.100.101 192.168.100.102 192.168.100.103 1.配置主机名到IP地址的映射(此步骤 ...