转载链接:https://www.jianshu.com/p/4e5b3e652639

Szegedy在2015年发表了论文Rethinking the Inception Architecture for Computer Vision,该论文对之前的Inception结构提出了多种优化方法,来达到尽可能高效的利用计算资源的目的。作者认为随意增大Inception的复杂度,后果就是Inception的错误率很容易飙升,还会成倍的增加计算量,所以必须按照一套合理的规则来优化Inception结构,具体如下:

一、基本规则

规则1:要防止出现特征描述的瓶颈(representational bottleneck)。所谓特征描述的瓶颈就是中间某层对特征在空间维度进行较大比例的压缩(比如使用pooling时),导致很多特征丢失。虽然Pooling是CNN结构中必须的功能,但我们可以通过一些优化方法来减少Pooling造成的损失。

规则2:特征的数目越多收敛的越快。相互独立的特征越多,输入的信息就被分解的越彻底,分解的子特征间相关性低,子特征内部相关性高,把相关性强的聚集在了一起会更容易收敛。这点就是Hebbin原理:fire together, wire together。规则2和规则1可以组合在一起理解,特征越多能加快收敛速度,但是无法弥补Pooling造成的特征损失,Pooling造成的representational bottleneck要靠其他方法来解决。

规则3:可以压缩特征维度数,来减少计算量。inception-v1中提出的用1x1卷积先降维再作特征提取就是利用这点。不同维度的信息有相关性,降维可以理解成一种无损或低损压缩,即使维度降低了,仍然可以利用相关性恢复出原有的信息。

规则4:整个网络结构的深度和宽度(特征维度数)要做到平衡。只有等比例的增大深度和维度才能最大限度的提升网络的性能。

二、优化方法

以下优化方法就是根据前面的规则总结出的:

方法1:可以将大尺度的卷积分解成多个小尺度的卷积来减少计算量。比如将1个5x5的卷积分解成两个3x3的卷积串联,从图1左侧可以看出两级3x3的卷积的覆盖范围就是5x5,两者的覆盖范围没有区别。假设5x5和两级3x3卷积输出的特征数相同,那两级3x3卷积的计算量就是前者的(3x3+3x3)/5x5=18/25。

方法2:可以使用非对称卷积。将nxn的卷积分解成1xn和nx1卷积的串联,例如n=3,分解后就能节省33%的计算量(图1右侧)。作者通过测试发现非对称卷积用在网络中靠中间的层级才有较好的效果(特别是feature map的大小在12x12~20x20之间时)。

方法3:可以使用并行结构来优化Pooling。前面的规则1提到Pooling会造成represtation bottleneck,一种解决办法就是在Pooling前用1x1卷积把特征数加倍(见图2右侧),这种加倍可以理解加入了冗余的特征,然后再作Pooling就只是把冗余的信息重新去掉,没有减少信息量。这种方法有很好的效果但因为加入了1x1卷积会极大的增大 计算量。替代的方法是使用两个并行的支路,一路1x1卷积,由于特征维度没有加倍计算量相比之前减少了一倍,一路是Pooling,最后再在特征维度拼合到一起(见图3)。这种方法即有很好的效果,又没有增大计算量。

方法4:使用Label Smoothing来对网络输出进行正则化。

Softmax层的输出可以用下面图4公式表示,损失loss可以用图5表示。假设分类的标签是独热码表示(正确分类是1,其他类别是0),从公式4可以反推出整个训练过程收敛时Softmax的正确分类的输入Zk是无穷大,这是一种极其理想的情况,如果让所有的输入都产生这种极其理想的输出,就会造成overfit(回想一下overfit的概念:能对所有的输入进行最理想的分类,鲁棒性差)。所以为了克服overfit,防止最终出来的正确分类p(k)=1,在输出p(k)时加了个参数delta(图6),生成新的q'(k),再用它替换公式5中的q(k)来计算loss。

者还对自己在GoogLeNet论文中提出的 分支分类器(Auxiliary Classifiers)效果进行了纠正。Szegedy认为自己当时的结论就是错误的,特别是靠近输入侧的那个Auxiliary Classifier,加不加完全没区别,但如果在靠近输出的那个Auxiliary Classifier的全连接层后加个BN,会起到正则化的作用,所有 第二个Auxiliary Classifier还是可以保留。起正则化作用的原因Szegedy完全没解释。。。

把上述的方法1~方法4组合到一起,就有了inceptio-v2结构(图7),图7中的三种inception模块的具体构造见图8。inception-v2的结构中如果Auxiliary Classifier上加上BN,就成了inception-v3。

inception_v2版本《Rethinking the Inception Architecture for Computer Vision》(转载)的更多相关文章

  1. Rethinking the inception architecture for computer vision的 paper 相关知识

    这一篇论文很不错,也很有价值;它重新思考了googLeNet的网络结构--Inception architecture,在此基础上提出了新的改进方法; 文章的一个主导目的就是:充分有效地利用compu ...

  2. 图像分类(三)GoogLenet Inception_v3:Rethinking the Inception Architecture for Computer Vision

    Inception V3网络(注意,不是module了,而是network,包含多种Inception modules)主要是在V2基础上进行的改进,特点如下: 将滤波器尺寸(Filter Size) ...

  3. Rethinking the Inception Architecture for Computer Vision

    https://arxiv.org/abs/1512.00567 Convolutional networks are at the core of most state-of-the-art com ...

  4. 【Network architecture】Rethinking the Inception Architecture for Computer Vision(inception-v3)论文解析

    目录 0. paper link 1. Overview 2. Four General Design Principles 3. Factorizing Convolutions with Larg ...

  5. 论文笔记——Rethinking the Inception Architecture for Computer Vision

    1. 论文思想 factorized convolutions and aggressive regularization. 本文给出了一些网络设计的技巧. 2. 结果 用5G的计算量和25M的参数. ...

  6. (转) WTF is computer vision?

        WTF is computer vision? Posted Nov 13, 2016 by Devin Coldewey, Contributor   Next Story   Someon ...

  7. Analyzing The Papers Behind Facebook's Computer Vision Approach

    Analyzing The Papers Behind Facebook's Computer Vision Approach Introduction You know that company c ...

  8. 计算机视觉和人工智能的状态:我们已经走得很远了 The state of Computer Vision and AI: we are really, really far away.

    The picture above is funny. But for me it is also one of those examples that make me sad about the o ...

  9. Computer Vision Tutorials from Conferences (3) -- CVPR

    CVPR 2013 (http://www.pamitc.org/cvpr13/tutorials.php) Foundations of Spatial SpectroscopyJames Cogg ...

随机推荐

  1. CodeForces920E 链表强优化BFS

    http://codeforces.com/problemset/problem/920/E 题意:求一个图的补图的连通分量个数以及每个连通分量里的点个数 如果这不是一个补图,BFS或者并查集可过,但 ...

  2. Redash 安装部署

    介绍 是一款开源的BI工具,提供了基于web的数据库查询和数据可视化功能. 官网:https://redash.io/ GitHub:https://github.com/getredash/reda ...

  3. nGrinder TestRunnerInsertMysqlSingle.groovy

    s C:\Users\Lindows\workspace\GroovyTest\src\com\iteye\lindows\mysql\TestRunnerInsertMysqlSingle.groo ...

  4. Python中集合的操作

    Python集合的基本详情 集合是无序的 集合是可变数据类型 集合属于不可哈希范围 集合自动去重 集合的操作 set1 = {1, 2, 3, 4, 5} set2 = {4, 5, 6, 7, 8} ...

  5. JDK1.5以后的版本特性

    一.JDK1.5新特性 1.泛型:泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数.这种参数类型可以用在类.接口和方法的创建中,分别称为泛型类.泛型接口.泛型方法.可以在编译的时候就能 ...

  6. C#设计模式(0)——设计原则

    设计原则 使用设计模式的根本原因是适应变化,提高代码复用率,使软件更具有可维护性和可扩展性.在进行设计的时候,我们需要遵循以下几个原则:单一职责原则.开闭原则.里氏替代原则.依赖倒置原则.接口隔离原则 ...

  7. Linux下C语言连接MySQL

    本文出自   http://blog.csdn.net/shuangde800 首先保证安装: 1:安装MySQL:sudo apt-get install mysql-server mysql-cl ...

  8. 前台ajax传参数,后台spring mvc用对象接受

    第二种方法:利用spring mvc的机制,调用对象的get方法,要求对象的属性名和传的参数名字一致(有兴趣的同学看 springmvc源码) 1.将参数名直接写成对象的属性名 $.ajax({ ur ...

  9. linux常用命令说明

    1. 基础快捷键使用 ctrl + c:停止进程 ctrl + l:清屏 ctrl + r:搜索历史命令 ctrl + q:退出 2.常用目录或文件夹命令 说明:安装linux时,创建一个itcast ...

  10. vue-router路由

    Vue Router 是 Vue.js 官方的路由管理器 自动全局安装: vue create 项目名称 手动配置: 1.安装 在app项目文件夹里面 npm i vue-router 2.在min. ...