Codeforces 177G2 Fibonacci Strings KMP 矩阵
原文链接https://www.cnblogs.com/zhouzhendong/p/CF117G2.html
题目传送门 - CF177G2
题意
定义斐波那契字符串如下:
$s_1="a"$
$s_2="b"$
$s_i=s_{i-1}+s_{i-2}\ \ \ \ \ (i\geq 3)$
给定 $k,m$,以及对应的 $m$ 组询问。
每组询问一个字符串 $x$ ,问 $x$ 在 $s_k$ 中出现了多少次。
$k\leq 10^{18},m\leq 10^4,|x|\leq 10^5$
题解
看到 $k$ 如此大,首先要想到矩阵快速幂。
但这个想法暂时还没什么用。
让我们来观察一下字符串的性质。
下面我们分别左对齐和右对齐来看一看斐波那契串。
$$\begin{eqnarray*}a\\b\\ba\\bab\\babba\\babbabab\\babbababbabba\\babbababbabbababbabab\end{eqnarray*}$$
$$\begin{align*}&a\\&b\\&ba\\&bab\\&babba\\&babbabab\\&babbababbabba\\&babbababbabbababbabab\end{align*}$$
我们可以发现并证明以下性质:
$1.$ 对于任意 $i(i>1)$ ,$s_i$ 为 $s_{i+1}$ 的前缀。
$2.$ 对于任意 $i(i>0)$ ,$s_i$ 为 $s_{i+2}$ 的后缀。
于是:当斐波那契串长度大于询问串的时候,拼接串时在拼接处产生的新的匹配数的变化周期为 $2$ 。
于是,对于长度大于询问串的情况,直接搞两个转移矩阵然后快速幂一下就可以了。
如果长度小于询问串,那么直接回答 $0$ 。
现在再仔细的看看如何求拼接处产生的匹配数。
我们记串 $x$ 在 $s$ 中的出现次数为 $KMP(s,x)$。
则拼接 $s_i,s_{i+1}$ 时,拼接处产生的匹配数为 $KMP(s_{i+1}+s_{i},x)-KMP(s_i,x)-KMP(s_{i+1},x)$ 。
转移矩阵的构造就不说了,比较基础的,请直接看代码。
每次从头开始拼接产生第一个长度比当前询问串大的斐波那契串的复杂度会超时,所以我们需要离线按照询问串长度从小到大来。
这样的复杂度为$O(\max{|x|}+m\log m+3^3\log k+\sum \max(|x|,|s_{f(|x|)}|))\approx O(m\log m+\sum{|x|})$。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=1e6+5,mod=1e9+7;
struct Mat{
static const int N=3;
int v[N][N];
Mat(){}
Mat(int x){
memset(v,0,sizeof v);
if (x==1)
for (int i=0;i<N;i++)
v[i][i]=1;
}
void set(int p){
v[0][0]=0,v[0][1]=1,v[0][2]=0;
v[1][0]=1,v[1][1]=1,v[1][2]=0;
v[2][0]=0,v[2][1]=p,v[2][2]=1;
}
void print(){
for (int i=0;i<3;i++,puts(""))
for (int j=0;j<3;j++)
printf("%3d ",v[i][j]);
puts("");
}
Mat operator * (Mat x){
Mat ans(0);
for (int i=0;i<N;i++)
for (int j=0;j<N;j++)
for (int k=0;k<N;k++)
ans.v[i][j]=(1LL*v[i][k]*x.v[k][j]+ans.v[i][j])%mod;
return ans;
}
Mat operator ^ (LL y){
Mat x=*this,ans(1);
while (y){
if (y&1LL)
ans=ans*x;
x=x*x,y>>=1;
}
return ans;
}
};
LL k;
int m;
struct STR{
string s;
int id,ans;
}s[N];
string s1="a",s2="b",s3="ba",s4="bab";
bool cmpL(STR a,STR b){
if (int(a.s.size())==int(b.s.size()))
return a.s<b.s;
return a.s.size()<b.s.size();
}
bool cmpid(STR a,STR b){
return a.id<b.id;
}
int Fail[N];
char S1[N],S2[N];
int KMP(string &s1,string &s2){
int n=s1.size(),m=s2.size();
for (int i=1;i<=n;i++)
S1[i]=s1[i-1];
for (int i=1;i<=m;i++)
S2[i]=s2[i-1];
Fail[0]=Fail[1]=0;
for (int i=2;i<=m;i++){
int k=Fail[i-1];
while (k&&S2[i]!=S2[k+1])
k=Fail[k];
if (S2[i]==S2[k+1])
k++;
Fail[i]=k;
}
int ans=0,k=0;
for (int i=1;i<=n;i++){
while (k&&S1[i]!=S2[k+1])
k=Fail[k];
if (S1[i]==S2[k+1])
k++;
if (k==m){
ans++;
k=Fail[k];
}
}
return ans;
}
int main(){
cin >> k >> m;
for (int i=1;i<=m;i++){
cin >> s[i].s;
s[i].id=i;
}
sort(s+1,s+m+1,cmpL);
int cnt=1;
for (int i=1;i<=m;i++){
while (cnt<k&&int(s1.size())<int(s[i].s.size())){
s1=s4+s3;
swap(s1,s2),swap(s2,s3),swap(s3,s4);
cnt++;
}
if (cnt==k){
s[i].ans=KMP(s1,s[i].s);
continue;
}
int a=KMP(s1,s[i].s),b=KMP(s2,s[i].s),c=KMP(s3,s[i].s),d=KMP(s4,s[i].s);
int del1=c-a-b,del2=d-b-c;
Mat st(0),tn1(0),tn2(0);
st.v[0][0]=a,st.v[0][1]=b,st.v[0][2]=1;
tn1.set(del1),tn2.set(del2);
st=st*((tn1*tn2)^((k-cnt)/2));
if ((k-cnt)&1)
st=st*tn1;
s[i].ans=st.v[0][0];
}
sort(s+1,s+m+1,cmpid);
for (int i=1;i<=m;i++)
printf("%d\n",s[i].ans);
return 0;
}
Codeforces 177G2 Fibonacci Strings KMP 矩阵的更多相关文章
- LightOJ 1268 Unlucky Strings (KMP+矩阵快速幂)
题意:给出一个字符集和一个字符串和正整数n,问由给定字符集组成的所有长度为n的串中不以给定字符串为连续子串的有多少个? 析:n 实在是太大了,如果小的话,就可以用动态规划做了,所以只能用矩阵快速幂来做 ...
- codeforces 149E . Martian Strings kmp
题目链接 给一个字符串s, n个字符串str. 令tmp为s中不重叠的两个连续子串合起来的结果, 顺序不能改变.问tmp能形成n个字符串中的几个. 初始将一个数组dp赋值为-1. 对str做kmp, ...
- [bzoj1009](HNOI2008)GT考试 (kmp+矩阵快速幂加速递推)
Description 阿 申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学 A1A2...Am(0&l ...
- LightOJ 1268 Unlucky Strings(KMP+矩阵乘法+基础DP)
题意 给出字符串的长度 \(n\) ,以及该字符串是由哪些小写字母组成,现给出一个坏串 \(S\) ,求存在多少种不同的字符串,使得其子串不含坏串. \(1 \leq n \leq 10^9\) \( ...
- codeforces gym #101161G - Binary Strings(矩阵快速幂,前缀斐波那契)
题目链接: http://codeforces.com/gym/101161/attachments 题意: $T$组数据 每组数据包含$L,R,K$ 计算$\sum_{k|n}^{}F(n)$ 定义 ...
- HNOI2008 GT考试 (KMP + 矩阵乘法)
传送门 这道题目的题意描述,通俗一点说就是这样:有一个长度为n的数字串(其中每一位都可以是0到9之间任意一个数字),给定一个长度为m的模式串,求有多少种情况,使得此模式串不为数字串的任意一个子串.结果 ...
- POJ 2406 Power Strings (KMP)
Power Strings Time Limit: 3000MSMemory Limit: 65536K Total Submissions: 29663Accepted: 12387 Descrip ...
- 【wikioi】1250 Fibonacci数列(矩阵乘法)
http://wikioi.com/problem/1250/ 我就不说这题有多水了. 0 1 1 1 矩阵快速幂 #include <cstdio> #include <cstri ...
- poj 2406 Power Strings kmp算法
点击打开链接 Power Strings Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 27368 Accepted: ...
随机推荐
- Tomcat服务的安装及配置
在进行Java Web开发时必须有Web服务器的支持,常用的Web服务器便是Tomcat,本文主要介绍Tomcat的安装和配置.客户端通过Web浏览器发送一个基于HTTP协议的请求到服务器上后,服务器 ...
- 前端 ---- js 模拟百度导航栏滚动案例
模拟百度导航栏滚动监听 代码如下: <!DOCTYPE html> <html lang="en"> <head> <meta chars ...
- wireshark找(检测)不到(捕获)网卡的解决办法
1 前言 有时候打开wireshark,会提示找不到可用网卡,此时是因为NetGroup Packet Filter Driver 服务没有开启. 环境:笔记本 系统:Win10 网络:WIFI 2 ...
- 每天备份tomcat日志
#!/bin/bash Backup_Home=/data/backup-log mkdir -p $Backup_Home Log_Home=/data/Tomcat/logs App_Log_Ho ...
- Confluence 6 为发送邮件配置服务器
配置你的 Confluence 服务器发送电子邮件消息能够允许你的 Confluence 用户: 接受邮件通知和每天更新报表. 通过电子邮件发送一个页面. 你可以通过配置 'From' 字段中的内容来 ...
- Confluence 6 访问你的宏正文(body)
请查看 Writing User Macros 页面获得有关如何写用户宏的介绍. 这个页面介绍你可以在用户宏中可以使用的的代码信息. 访问你的宏正文(body) 在你用户宏模板中的 $body 对象可 ...
- window 上安装 Scala
第一步:Java 设置 检测方法前文已说明,这里不再描述. 如果还为安装,可以参考我们的Java 开发环境配置. 接下来,我们可以从 Scala 官网地址 http://www.scala-lang. ...
- laravel 获取当前月,当前星期,当天起始时间方法
获取当前月起始时间: 1. $time=time(); $start=date('Y-m-01',$time);//获取指定月份的第一天 $end=date('Y-m-t',$time); //获取指 ...
- cf869C组合计数问题
如果在两个区域里连点,两个区域内选的点数一定要相等 即a中选出i个点,必须与b中选出i个点相连 连接种类数为 然后我们再来看,如果ab中有两点相连,其中一点再与c相连会出事吗? 很显然不会对答案产生 ...
- Nginx + tomcat服务器 负载均衡
Nginx 反向代理初印象 Nginx (“engine x”) 是一个高性能的HTTP和反向代理 服务器,也是一个IMAP/POP3/SMTP服务器.其特点是占有内存少,并发能力强,事实上nginx ...