Description

The left figure below shows a complete 3*3 grid made with 2*(3*4) (=24) matchsticks. The lengths of all matchsticks are one. You can find many squares of different sizes in the grid. The size of a square is the length of its side. In the grid shown in the left figure, there are 9 squares of size one, 4 squares of size two, and 1 square of size three.

Each matchstick of the complete grid is identified with a unique number which is assigned from left to right and from top to bottom as shown in the left figure. If you take some matchsticks out from the complete grid, then some squares in the grid will be destroyed, which results in an incomplete 3*3 grid. The right figure illustrates an incomplete 3*3 grid after removing three matchsticks numbered with 12, 17 and 23. This removal destroys 5 squares of size one, 3 squares of size two, and 1 square of size three. Consequently, the incomplete grid does not have squares of size three, but still has 4 squares of size one and 1 square of size two.



As input, you are given a (complete or incomplete) n*n grid made with no more than 2n(n+1) matchsticks for a natural number 5 <= n . Your task is to compute the minimum number of matchsticks taken

out to destroy all the squares existing in the input n*n grid.

Input

The input consists of T test cases. The number of test cases (T ) is given in the first line of the input file.

Each test case consists of two lines: The first line contains a natural number n , not greater than 5, which implies you are given a (complete or incomplete) n*n grid as input, and the second line begins with a nonnegative integer k , the number of matchsticks that are missing from the complete n*n grid, followed by

k numbers specifying the matchsticks. Note that if k is equal to zero, then the input grid is a complete n*n grid; otherwise, the input grid is an incomplete n*n grid such that the specified k matchsticks are missing from the complete n*n grid.

Output

Print exactly one line for each test case. The line should contain the minimum number of matchsticks that have to be taken out to destroy all the squares in the input grid.

Sample Input

2
2
0
3
3 12 17 23

Sample Output

3
3

题意:t组数据,给出n代表n*n的网格,给一个值k,然后k个值,表示去掉k所代表的边,问还需要最少去掉几条边可以使得网格中没有正方形。

思路:

评估函数:每出现一个正方形,就删去其含有的边,然后继续扫描正方形,这样计数出来的次数比实际需要次数小(因为一次删去了多条边)

对于网格中正方形的枚举:

①先枚举正方形大小,1 <= size <= n;

②枚举网格每行最左边的火柴

③对于每个行位置,枚举该行可以成为该size大小正方形的最左边火柴

④标记该正方形的所有上边界和下边界(知道size和上边界最左火柴很容易求得)

 标记该正方形的所有左边界和有边界

(代码借鉴网上,侵删)

stick【i】表示含有i火柴的正方形编号

square【i】表示i正方形所含火柴编号

 
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std; int t;
int totsquare,totstick,base;
vector<int>stick[],square[];
int n,k;
int ans;
int exi[],tmp[]; int cal()
{
int res = ;
for(int i=;i<=totsquare;i++)tmp[i] = exi[i];
for(int i=;i<=totsquare;i++)if(!tmp[i])
{
res++;
for(int j=;j<square[i].size();j++)
{
for(int l=;l<stick[square[i][j]].size();l++)
{
tmp[stick[square[i][j]][l]]--;
}
}
}
return res;
} bool dfs(int sum,int lim)
{
if(sum + cal() > lim)return ;
int tmp = ;
while(exi[tmp] < && tmp <= totsquare)tmp++;
if(tmp > totsquare)
{
ans = min(ans,sum);
return ;
}
for(int i=;i<square[tmp].size();i++)
{
int sti = square[tmp][i];
for(int j=;j<stick[sti].size();j++)
{
exi[stick[sti][j]]--;
}
if(dfs(sum+,lim))return ;
for(int j=;j<stick[sti].size();j++)
{
exi[stick[sti][j]]++;
}
}
return ;
}
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&k);
totsquare = ,totstick = *n*(n+),base = *n+;
for(int i=; i<; i++)
{
stick[i].clear();
square[i].clear();
}
for(int sz=; sz<=n; sz++)
{
for(int i=; (i-)/base+sz<=n; i+=base)
{
for(int j=i; j-i+sz<=n; j++)
{
totsquare++;
for(int l=j; l-j<sz; l++) // 正方形上下边界标记
{
square[totsquare].push_back(l);
square[totsquare].push_back(l+sz*base);
stick[l].push_back(totsquare);
stick[l+sz*base].push_back(totsquare);
}
for(int l=j+n; (l-j-sz)/base<sz; l+=base) //正方形左右边界标记
{
square[totsquare].push_back(l);
square[totsquare].push_back(l+sz);
stick[l].push_back(totsquare);
stick[l+sz].push_back(totsquare);
}
}
}
}
memset(exi,,sizeof(exi));
for(int i=; i<=k; i++)
{
int t_st;
scanf("%d",&t_st);
for(int j=; j<stick[t_st].size(); j++)
{
exi[stick[t_st][j]]--;
}
totstick--;
}
ans = totstick;
for(int maxd=;; maxd++)
{
if(dfs(,maxd))
{
printf("%d\n",ans);
break;
}
}
}
}

Square Destroyer-POJ 1084 (IDA*)的更多相关文章

  1. Booksort POJ - 3460 (IDA*)

    Description The Leiden University Library has millions of books. When a student wants to borrow a ce ...

  2. POJ题目(转)

    http://www.cnblogs.com/kuangbin/archive/2011/07/29/2120667.html 初期:一.基本算法:     (1)枚举. (poj1753,poj29 ...

  3. Repeater POJ - 3768 (分形)

    Repeater POJ - 3768 Harmony is indispensible in our daily life and no one can live without it----may ...

  4. UVA - 10384 The Wall Pusher(推门游戏)(IDA*)

    题意:从起点出发,可向东南西北4个方向走,如果前面没有墙则可走:如果前面只有一堵墙,则可将墙向前推一格,其余情况不可推动,且不能推动游戏区域边界上的墙.问走出迷宫的最少步数,输出任意一个移动序列. 分 ...

  5. Radar Installation POJ - 1328(贪心)

    Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. ...

  6. Best Cow Fences POJ - 2018 (二分)

    Farmer John's farm consists of a long row of N (1 <= N <= 100,000)fields. Each field contains ...

  7. E - The Balance POJ - 2142 (欧几里德)

    题意:有两种砝码m1, m2和一个物体G,m1的个数x1,  m2的个数为x2, 问令x1+x2最小,并且将天平保持平衡 !输出  x1 和 x2 题解:这是欧几里德拓展的一个应用,欧几里德求不定方程 ...

  8. 人类即将进入互联网梦境时代(IDA)

    在电影<盗梦空间>中,男主角科布和妻子在梦境中生活了50年,从楼宇.商铺.到河流浅滩.一草一木.这两位造梦师用意念建造了属于自己的梦境空间.你或许并不会想到,在不久未来,这看似科幻的情节将 ...

  9. POJ 2286 The Rotation Game(IDA*)

    The Rotation Game Time Limit: 15000MS   Memory Limit: 150000K Total Submissions: 6396   Accepted: 21 ...

随机推荐

  1. js——正则表达式

    1. 创建一个正则表达式 var patt=new RegExp(pattern,modifiers);var patt=/pattern/modifiers; var index = str.sea ...

  2. SQL Server 2016 Failover Cluster + ALwaysOn

    SQL Server 2016 Failover Cluster + ALwaysOn 环境的搭建 近期公司为了提高服务的可用性,就想到了部署AlwaysOn,之前的环境只是部署了SQL Server ...

  3. Confluence 6 创建站点的导出文件

    希望为你的站点创建一个 XML 导出文件: 进入  > 基本配置(General Configuration) > 备份和恢复(Backup & Restore). 选择 归档到备 ...

  4. leetcode(js)算法605之种花问题

    假设你有一个很长的花坛,一部分地块种植了花,另一部分却没有.可是,花卉不能种植在相邻的地块上,它们会争夺水源,两者都会死去. 给定一个花坛(表示为一个数组包含0和1,其中0表示没种植花,1表示种植了花 ...

  5. requireJs require.config公共配置

    //场景:让require.config配置文件成一个公共文件,每个页面引用这个公共配置 //方式一样例: require.config({ baseUrl: (function () { var p ...

  6. java常用实用类

    1.String类概念 java程序中默认导入java.lang包的,像java.lang.String等String类属于final类,用户不能扩展String类,String 类没有子类.Stri ...

  7. cf909C 线性dp+滚动数组好题!

    一开始一直以为是区间dp.. /* f下面必须有一个s 其余的s可以和任意f进行匹配 所以用线性dp来做 先预处理一下: fffssfsfs==>3 0 1 1 dp[i][j] 表示第i行缩进 ...

  8. Java面向对象(二)

    一.封装 1.为什么要使用封装在类的外部直接操作类的属性是”不安全的"2.如何实现封装   1).属性私有化:设置属性的修饰符为private    2) .提供公共的set和get方法赋值 ...

  9. Jmeter 谷歌插件工具blazemeter录制脚本

    1.下载谷歌浏览器插件工具:blazemeter. 2.在谷歌浏览器中拖放安装扩展工具:blazemeter. 粘贴的图像828x219 13.5 KB 3.测试网站利用这个工具录制jmter脚本. ...

  10. 关于使用summernote编辑器提示内容无法汉化临时解决办法

    原因:使用汉化summernote-zh-CN.js文件无法汉化 $('#summernote').summernote({ lang: 'zh-CN' }); 解决方法: 打开summernote. ...