分块还真是应用广泛啊......

题意:求

解:以n0.5为界。

当p小于n0.5的时候,直接用p²大小的数组储存答案。

预处理n1.5,修改n0.5

当p大于n0.5的时候,直接按照定义计算,复杂度n0.5

所以总复杂度n1.5,实在是巧妙不堪啊......(什么SB词汇)

 #include <cstdio>
#include <algorithm>
#include <cmath> const int N = ; int fr[N], le[N], re[N];
int ans[][], a[N];
char str[]; int main() {
int n, m;
scanf("%d%d", &n, &m);
int T = sqrt(n);
for(int i = ; i <= n; i++) {
scanf("%d", &a[i]);
fr[i] = (i - ) / T + ;
}
for(int i = ; i <= fr[n]; i++) {
le[i] = re[i - ] + ;
re[i] = le[i] + T - ;
if(i == fr[n]) {
re[i] = n;
}
}
for(int i = ; i <= T; i++) {
for(int j = ; j <= n; j++) {
ans[i][j % i] += a[j];
}
} for(int i = , x, y; i <= m; i++) {
scanf("%s%d%d", str, &x, &y);
if(str[] == 'A') { // ask
if(x <= T) {
printf("%d\n", ans[x][y]);
}
else {
int ans = ;
for(int k = ; k * x + y <= n; k++) {
ans += a[k * x + y];
}
printf("%d\n", ans);
}
}
else { // change
for(int j = ; j <= T; j++) {
ans[j][x % j] += y - a[x];
}
a[x] = y;
}
} return ;
}

AC代码

洛谷P3396 哈希冲突的更多相关文章

  1. 洛谷P3396 哈希冲突 (分块)

    洛谷P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣. ...

  2. 洛谷 P3396 哈希冲突 解题报告

    P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣.他会 ...

  3. 洛谷P3396哈希冲突

    传送门啦 非常神奇的分块大法. 这个题一看数据范围,觉得不小,但是如果我们以 $ \sqrt(x) $ 为界限,数据范围就降到了 $ x < 400 $ 我们设数组 $ f[i][j] $ 表示 ...

  4. 洛谷P3396 哈希冲突(分块)

    传送门 题解在此,讲的蛮清楚的->这里 我就贴个代码 //minamoto #include<iostream> #include<cstdio> #include< ...

  5. P3396 哈希冲突(思维+方块)

    题目 P3396 哈希冲突 做法 预处理模数\([1,\sqrt{n}]\)的内存池,\(O(n\sqrt{n})\) 查询模数在范围里则直接输出,否则模拟\(O(m\sqrt{n})\) 修改则遍历 ...

  6. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  7. P3396 哈希冲突

    很好的根号算法(这种思想好像叫根号分治?) 首先,暴力是Ο(n2)的 考虑预处理: for(p=1;p<=n;p++) //枚举模数 ans[p][i%p]+=value[i]; 看似很好但还是 ...

  8. p3396 哈希冲突(暴力)

    想了好久,没想到优秀的解法,结果是个暴力大吃一静.jpg 分类讨论,预处理\(p\le \sqrt{n}\) 的情况,其他直接暴力,复杂度\(O(n \sqrt{n} )\) #include < ...

  9. 【洛谷3950】部落冲突(LCT维护连通性)

    点此看题面 大致题意: 给你一棵树,\(3\)种操作:连一条边,删一条边,询问两点是否联通. \(LCT\)维护连通性 有一道类似的题目:[BZOJ2049][SDOI2008] Cave 洞穴勘测. ...

随机推荐

  1. js 判断字符串中是否包含某个字符串的方法实例

    String对象的方法 方法一: indexOf()   (推荐) var str = "123"; console.log(str.indexOf("3") ...

  2. C++中String类的字符串分割实现

    最近笔试,经常遇到需要对字符串进行快速分割的情景,主要是在处理输入的时候,而以前练习算法题或笔试,很多时候不用花啥时间考虑测试用例输入的问题.可是C++标准库里面没有像java的String类中提供的 ...

  3. webpack+vue 我的视角(持续更新)

    最近一直在研究webpack+vue的组合拳,现在分享一下: webpack就是一个项目管理工具,可以各种模块化加载,然后压缩,当然还有热加载技术(时灵时不灵..) vue是mv*模式的框架,组件化开 ...

  4. flutter image_picker使用照相机

    dependencies: image_picker: ^0.4.12+1 最新的^0.5+9编译无法通过 import 'dart:io'; import 'dart:async'; import ...

  5. C#中那些常用的工具类(Utility Class)(一)

    代码越写越多,但是我们也需要经常去反思那些写过的代码,Utility Class就是这一类需要特别去反思总结的类,这些类像工具一样,我们经常通过一些静态方法,通过传入一些参数,然后得到我们需要的结果, ...

  6. Canvas & SVG

    Canvas & SVG https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-dev ...

  7. 库存盘点打印功能生成PDF速度太慢使用页面缓存

    一.业务需求 二.产品设计 三.UI设计 四.程序设计 1.使用behavior配置页面缓存 class WmsCheckController extends Controller { /** * @ ...

  8. Python memecache

    memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载,故常用来做数据库缓存.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态 ...

  9. mysql “Too many connections” 解决办法

    今天生产服务器上的MySQL出现了一个不算太陌生的错误“Too many connections”.平常碰到这个问题,我基本上是修改/etc/my.cnf的max_connections参数,然后重启 ...

  10. html5 autoplay不起作用 Uncaught (in promise) DOMException: play() failed because the user didn't interac

    chrome://flags/#autoplay-policy