1.图片数据集收集 共 16种

  1. 集装箱船 container ship
  2. 散货船 bulker
  3. 油船 tanker
  4. 游轮 / 客轮 / 邮轮 passenger liner
  5. 渔船 fishing boat
  6. 滚装船 Ro/Ro ship
  7. 引航船 pilot boat
  8. LNG船 LNG ship
  9. LPG船 LPG ship
  10. 公务船 / 执法船  official ship
  11. 渡轮  ferry
  12. 拖船 tug
  13. 帆船 sailing boat
  14. 工程船 engineering ship
  15. 驳船 / 内河船 /江船 / 干货船 / 内陆船 river boat
  16. 游艇 / 快艇 speedboat
  17. 木船 wooden boat

首先考虑从相关机构获取优质的数据集 其次爬虫收集(整理图片 删除过小、过大、不符合类别或者损坏的图片)

http://www.shipspotting.com/gallery/photo.php?lid=2987189

标注标签 container ship,bulker,tanker,passenger liner,fishing boat,Ro/Ro ship,pilot boat,LNG ship,LPG ship,official ship,ferry,tug,sailing boat,engineering ship,river boat,speedboat,wooden boat

classes = ["container ship","bulker","tanker","passenger liner","fishing boat","Ro/Ro ship","pilot boat","LNG ship","LPG ship","official ship","ferry,tug","sailing boat","engineering ship","river boat","speedboat","wooden boat"]

obj.names 和 names.list

container ship
bulker
tanker
passenger liner
fishing boat
Ro/Ro ship
pilot boat
LNG ship
LPG ship
official ship
ferrytug
sailing boat
engineering ship
river boat
speedboat
wooden boat

2.图片标注

我使用的是精灵标注助手,标注完之后使用pascal-voc格式进行输出

输入格式如下 <name>bulkship</name> 这里的bulkship就是你选择的标注名 后面会用到

<?xml version="1.0" ?>
<annotation>
<folder>ship</folder>
<filename>BulkShip3.jpg</filename>
<path>/home/joe/Desktop/aaa/ship/BulkShip3.jpg</path>
<source>
    <database>Unknown</database>
</source>
<size>
    <width></width>
    <height></height>
    <depth></depth>
</size>

<segmented></segmented>
    <object>
    <name>bulkship</name>
    <pose>Unspecified</pose>
    <truncated></truncated>
    <difficult></difficult>
    <bndbox>
        <xmin></xmin>
        <ymin></ymin>
        <xmax></xmax>
        <ymax></ymax>
    </bndbox>
</object>
</annotation>

3.标注的xml转换成yolo需要的txt格式

1.将已经标注好的所有xml放进annotation文件夹里面 摆放关系如图

2.运行xml_to_txt.py labels中会得到 yolo所需要的txt格式文件

下面是xml_to_txt.py 代码 注意上面代码中classes = ["containership", "bulkship"] 需要改成你自己训练的标注名集合 (<name>bulkship</name> ) list中的顺序较重要

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join

classes = ["containership", "bulkship"]

def convert(size, box):
    dw = ./size[]
    dh = ./size[]
    x = (box[] + box[])/2.0
    y = (box[] + box[])/2.0
    w = box[] - box[]
    h = box[] - box[]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

def convert_annotation(path,image_id):
    in_file = open(os.path.join(path+r'/annotation/%s.xml'%(image_id)))  #input
    out_file = open(os.path.join(path+r'/labels/%s.txt'%(image_id)), 'w')    #output
    tree=ET.parse(in_file)     #get xml tree
    root = tree.getroot()      #get root
    size = root.find('size')
    w = int(size.find('width').text)    #width of image
    h = int(size.find('height').text)

    for obj in root.iter('object'):   #find every object
        difficult = obj.find('difficult').text   #find difficult
        ship_name = obj.find('name').text
        :
            continue

        class_num = classes.index(ship_name)
        xmlbox = obj.find('bndbox')  #get boundbox

        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        bb = convert((w,h), b)
        out_file.write(str(class_num) + " " + " ".join([str(a) for a in bb]) + '\n') #

path=os.getcwd()

os.walk(path)

filenames=os.listdir(os.path.join(path+'/annotation'))

isExists=os.path.exists(os.path.join(path+r'/labels/'))

if not isExists:
    os.mkdir(os.path.join(path+r'/labels/'))

for filename in filenames:

    print(filename)
    image_id=filename.split(]
    convert_annotation(path,image_id)

运行脚本如图

相应的txt文件

txt内容格式如下

 0.53125 0.547752808988764 0.9328358208955224 0.44241573033707865

1代表 第二位 bulkship    ( classes = ["containership", "bulkship"] )

其余四个浮点数标示 标记框 中心坐标和 框宽度和长度(具体含义自己百度)

4 暗网整合

1.下载暗网

git clone https://github.com/pjreddie/darknet.git
cd darknetmake clean
make -j4

把所有的txt格式的标注文件放进

/darknet/data/labels

所有的待图片数据集放进

/darknet/data/images

运行process.py 自动划分 训练集和测试集

# modified 

import glob, os

# Current directory
current_dir = os.path.dirname(os.path.abspath(__file__))

# Directory where the data will reside, relative to 'darknet.exe'
path_data = 'images/'

# Percentage of images to be used for the test set
percentage_test = ;

# Create and/or truncate train.txt and test.txt
file_train = open(path_data + '/train.txt', 'w')
file_test = open(path_data + '/test.txt', 'w')

# Populate train.txt and test.txt
counter =
index_test = round( / percentage_test)
for pathAndFilename in glob.iglob(os.path.join(path_data, "*.jpg")):
    title, ext = os.path.splitext(os.path.basename(pathAndFilename))
    if counter == index_test:
        counter =
        file_test.write("data/" + path_data + title + '.jpg' + "\n")
    else:
        file_train.write("data/" + path_data + title + '.jpg' + "\n")
        counter = counter + 

print("ok")

运行完毕会得到两个文件

文件内容类似如下

data/images/ContainerShip786.jpg
data/images/BulkShip93.jpg
data/images/ContainerShip1255.jpg
data/images/BulkShip108.jpg
data/images/ContainerShip916.jpg
data/images/ContainerShip426.jpg
data/images/ContainerShip1371.jpg
data/images/ContainerShip1122.jpg
data/images/BulkShip71.jpg
data/images/BulkShip12.jpg
...

然后新建两个txt文件 obj.names 和 names.list 前者放 /darknet/data/images/ 下  后者放 /darknet/data/

内容参考 你要训练的种类(标注的种类) classes = ["containership", "bulkship"]

格式如下 严格按照 xml_to_txt.py中classes 顺序

然后在/darknet/cfg中新增obj.data

classes= 2   # 你训练的种类
train = data/images/train.txt  # 训练集
valid = data/images/test.txt   # 测试集
labels = data/images/obj.names  #按行摆放的标注的种类名称 backup = backup/    # 每100次迭代存放一次权重的位置

上面可以根据你自己的具体情况修改

2.下载预训练权重

这个主要是卷积部分的预训练权重,使用这个权重可以节省训练时间,直接输入这个命令下载,或者去darknet官网上下载都是可以的。

wget https://pjreddie.com/media/files/darknet53.conv.74   # 这个是yolov3的预训练权重wget https://pjreddie.com/media/files/darknet19_448.conv.23  # 这个是yolov2的预训练权重

以上任选其一

对于权重文件的命名,比如darknet19_448.conv.23,指这个权重文件预先使用darknet19 448x448训练得到,这个darknet19网络有19个卷积层。文件名末尾的conv.23 表示作为待训练网络的预训练权重文件,这个待训练网络的卷积层有23个,而yolov2-voc.cfg中正好有23个卷积层。文件名中的448表示输入的size,通常width=height,这里就说明输入的width=height=448

yolov3使用预训练权重文件darknet53.conv.74,这个权重文件本身是使用darknet53 448x448 的配置文件训练得到,这个配置文件中有53个卷积层,而darknet53.conv.74作为yolov3-voc.cfg的预训练权重,文件名末尾的conv.74预示着yolov3-voc.cfg中应该有74个卷积层,而事实上,yolov3-voc.cfg中有75的卷积层,这说明,上述说法并不准确,仅仅作为一个大体上的对应

如果你想选择yolov2进行训练

复制 /darknet/cfg/ 中 yolov2-voc.cfg 重命名为 yolo-obj.cfg 并根据自己配置 按照注释 提示 修改内容

[net]
# Testing
#batch=
#subdivisions=
# Training
batch=64        # 显存大 可设置128
subdivisions=8  # 显存小 就设32 或 64
height=
width=
channels=
momentum=0.9
decay=0.0005
angle=
saturation = 1.5
exposure = 1.5
hue=.

learning_rate=0.001
burn_in=
max_batches =
policy=steps
steps=,
scales=.,.

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[maxpool]
size=
stride=

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[maxpool]
size=
stride=

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[maxpool]
size=
stride=

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[maxpool]
size=
stride=

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[maxpool]
size=
stride=

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

#######

[convolutional]
batch_normalize=
size=
stride=
pad=
filters=
activation=leaky

[convolutional]
batch_normalize=
size=
stride=
pad=
filters=
activation=leaky

[route]
layers=-

[convolutional]
batch_normalize=
size=
stride=
pad=
filters=
activation=leaky

[reorg]
stride=

[route]
layers=-,-

[convolutional]
batch_normalize=
size=
stride=
pad=
filters=
activation=leaky

[convolutional]
size=
stride=
pad=
filters=35   # filters = (coords +1 +classes)*5 我这里classes=2 filters =35
activation=linear

[region]
anchors =  1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071
bias_match=
classes=2   # 最后分类的类别数量
coords=
num=
softmax=
jitter=.
rescore=

object_scale=
noobject_scale=
class_scale=
coord_scale=

absolute=
thresh = .
random=1  # 配置好 可开启 不好设置为0

如果你想选择yolov3进行训练

复制 /darknet/cfg/ 中 yolov3-voc.cfg 重命名为 yolo-obj.cfg 并根据自己配置 按照注释 提示 修改内容

[net]
# Testing
# batch=
# subdivisions=
# Training
batch=64  # 显存大建议改为128
subdivisions=16  # 显存大改为8 显存小改为32 或者 64
width=
height=
channels=
momentum=0.9
decay=0.0005
angle=
saturation = 1.5
exposure = 1.5
hue=.

learning_rate=0.001
burn_in=
max_batches =
policy=steps
steps=,
scales=.,.

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

# Downsample

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

# Downsample

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

# Downsample

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

# Downsample

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

# Downsample

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[shortcut]

activation=linear

######################

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
size=
stride=
pad=
filters=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
size=
stride=
pad=
filters=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
size=
stride=
pad=
filters=
activation=leaky

[convolutional]
size=
stride=
pad=
filters=21 # filters=3*(classes+5)
activation=linear

[yolo]
mask = ,,
anchors = ,,  ,,  ,,  ,,  ,,  ,,  ,,  ,,  ,
classes=2 # 修改类别数
num=
jitter=.
ignore_thresh = .
truth_thresh =
random=

[route]
layers = -

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[upsample]
stride=

[route]
layers = -, 

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
size=
stride=
pad=
filters=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
size=
stride=
pad=
filters=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
size=
stride=
pad=
filters=
activation=leaky

[convolutional]
size=
stride=
pad=
filters=21 # filters =3*(classes+5)
activation=linear

[yolo]
mask = ,,
anchors = ,,  ,,  ,,  ,,  ,,  ,,  ,,  ,,  ,
classes=2 #修改类别
num=
jitter=.
ignore_thresh = .
truth_thresh =
random=

[route]
layers = -

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[upsample]
stride=

[route]
layers = -, 

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
size=
stride=
pad=
filters=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
size=
stride=
pad=
filters=
activation=leaky

[convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky

[convolutional]
batch_normalize=
size=
stride=
pad=
filters=
activation=leaky

[convolutional]
size=
stride=
pad=
filters=21 #这里注意修改filters = 3*(classes+5)
activation=linear

[yolo]
mask = ,,
anchors = ,,  ,,  ,,  ,,  ,,  ,,  ,,  ,,  ,
classes= 2 # 修改类别数
num=
jitter=.
ignore_thresh = .
truth_thresh =
random=1  # 显存小改为0
#这个文件的最下面有3个YOLO层,这三个地方的classes做相应修改
#每个YOLO层的上一层的convolutional层(activation=linear)的filters也要修改

5 配置Makefile 如果你的训练指令报错 对半是这里的路径设置问题

按照注释提示 修改内容


GPU=1 #启用gpu训练
CUDNN=1 #启动深度学习加速库
OPENCV=1 # 涉及视频会用到
OPENMP=0
DEBUG=0


ARCH= -gencode arch=compute_61,code=sm_61 \    #这里根据你的显卡去英伟达官网查询算力,不是主流型号会报错
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=[sm_50,compute_50] \
-gencode arch=compute_52,code=[sm_52,compute_52]
# -gencode arch=compute_20,code=[sm_20,sm_21] \ This one is deprecated?


# This is what I use, uncomment if you know your arch and want to specify
# ARCH= -gencode arch=compute_52,code=compute_52


VPATH=./src/:./examples
SLIB=libdarknet.so
ALIB=libdarknet.a
EXEC=darknet
OBJDIR=./obj/


CC=gcc
CPP=g++
NVCC=/usr/local/cuda/bin/nvcc  #这里需要格局你自己的目录修改
AR=ar
ARFLAGS=rcs
OPTS=-Ofast
LDFLAGS= -lm -pthread
COMMON= -Iinclude/ -Isrc/
CFLAGS=-Wall -Wno-unused-result -Wno-unknown-pragmas -Wfatal-errors -fPIC


ifeq ($(OPENMP), 1)
CFLAGS+= -fopenmp
endif


ifeq ($(DEBUG), 1)
OPTS=-O0 -g
endif


CFLAGS+=$(OPTS)


ifeq ($(OPENCV), 1)
COMMON+= -DOPENCV
CFLAGS+= -DOPENCV
LDFLAGS+= `pkg-config --libs opencv` -lstdc++
COMMON+= `pkg-config --cflags opencv`
endif


ifeq ($(GPU), 1)
COMMON+= -DGPU -I/usr/local/cuda/include/  #这里需要根据你自己的目录修改
CFLAGS+= -DGPU
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
endif


ifeq ($(CUDNN), 1)
COMMON+= -DCUDNN
CFLAGS+= -DCUDNN
LDFLAGS+= -lcudnn
endif


OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o detection_layer.o route_layer.o upsample_layer.o box.o normalization_layer.o avgpool_layer.o layer.o local_layer.o shortcut_layer.o logistic_layer.o activation_layer.o rnn_layer.o gru_layer.o crnn_layer.o demo.o batchnorm_layer.o region_layer.o reorg_layer.o tree.o lstm_layer.o l2norm_layer.o yolo_layer.o iseg_layer.o image_opencv.o
EXECOBJA=captcha.o lsd.o super.o art.o tag.o cifar.o go.o rnn.o segmenter.o regressor.o classifier.o coco.o yolo.o detector.o nightmare.o instance-segmenter.o darknet.o
ifeq ($(GPU), 1)
LDFLAGS+= -lstdc++
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o avgpool_layer_kernels.o
endif


EXECOBJ = $(addprefix $(OBJDIR), $(EXECOBJA))
OBJS = $(addprefix $(OBJDIR), $(OBJ))
DEPS = $(wildcard src/*.h) Makefile include/darknet.h


all: obj backup results $(SLIB) $(ALIB) $(EXEC)
#all: obj results $(SLIB) $(ALIB) $(EXEC)


$(EXEC): $(EXECOBJ) $(ALIB)
$(CC) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS) $(ALIB)


$(ALIB): $(OBJS)
$(AR) $(ARFLAGS) $@ $^


$(SLIB): $(OBJS)
$(CC) $(CFLAGS) -shared $^ -o $@ $(LDFLAGS)


$(OBJDIR)%.o: %.cpp $(DEPS)
$(CPP) $(COMMON) $(CFLAGS) -c $< -o $@


$(OBJDIR)%.o: %.c $(DEPS)
$(CC) $(COMMON) $(CFLAGS) -c $< -o $@


$(OBJDIR)%.o: %.cu $(DEPS)
$(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@


obj:
mkdir -p obj
backup:
mkdir -p backup
results:
mkdir -p results


.PHONY: clean


clean:
rm -rf $(OBJS) $(SLIB) $(ALIB) $(EXEC) $(EXECOBJ) $(OBJDIR)/*

 

重新编译

make clean
make -j4

6训练

从头开始训练yolov2

./darknet detector train cfg/obj.data cfg/yolo-obj.cfg -gpu  | tee train_yolov2.log

从头开始训练yolov3

./darknet detector train cfg/obj.data cfg/yolo-obj.cfg -gpu  | tee train_yolov3.log

yolo2训练

sudo ./darknet detector train cfg/obj.data cfg/yolo-obj.cfg darknet19_448.conv. | tee train_log.txt

yolo3训练

sudo ./darknet detector train cfg/obj.data cfg/yolo-obj.cfg darknet53.conv.74 | tee train_log.txt

:  images

当训练在1-300轮次batch时 avg 会有比较奇怪的从小到大 从大到小的波动 学习率一直显示为0.00000  obj指数一直变小 这是正常的

基本到 600轮次batch后 avg就稳定下来了 obj也会持续变大 不会有那么大的波动差

train_log.txt 具体内容

yolo-obj
Learning Rate: 0.001, Momentum: 0.9, Decay: 0.0005
Resizing

Loaded: 0.000084 seconds
Region Avg IOU:
Region Avg IOU:
Region Avg IOU:
Region Avg IOU:
Region Avg IOU:
Region Avg IOU:
Region Avg IOU:
Region Avg IOU:
:  images
Loaded: 0.000081 seconds
Region Avg IOU:
Region Avg IOU:
Region Avg IOU:
Region Avg IOU:
Region Avg IOU:
Region Avg IOU:
Region Avg IOU:
Region Avg IOU:
:  images
Loaded: 0.000090 seconds
参数意义
Region xx: cfg文件中yolo-layer的索引.
AVE IOU: 当前迭代中,预测的box和标注的box的平均交并比,越大越好,最大是1.
class: 标注物体的分类准确率,越大越好,期望值是1.
obj: 越大越好,期望值为1.
no obj:越小越好,期望值为0.
Avg Recall 召回率,召回率=检测出的正样本/实际的正样本
count: 正样本数目.

输出的batch轮次参数中

:  images

302: 指示当前训练的迭代次数
16.976120: 是总体的Loss(损失)
16.363884 avg : 是当前平均Loss,这个数值应该越低越好,一般来说,一旦这个数值低于0.060730 avg就可以终止训练了。
0.000008 rate: 代表当前的学习率,是在.cfg文件中定义的(不同时期学习率不一样)
11.815446 seconds: 表示当前批次训练花费的总时间。
38656 images: 这一行最后的这个数值是1*64的大小,表示到目前为止,参与训练的图片的总量。

参考 自 https://blog.csdn.net/tanmx219/article/details/82906707

https://blog.csdn.net/csdn_zhishui/article/details/85389168

1.cfg文件里的batch就是batch_size,subdivisions只是在显存不足的情况下把batch分批放入训练。      ?现在怀疑batch_size = batch/subdivisions。昨天跑的一个训练如果batch = batch_size的话那大约有80个epoch,但还是明显欠拟合,loss很高。所以还在疑惑???

2.epoch = max_batches/(images/bach)   ——  暂时理解应该是这样?

3.max_batches = max_iterations

4.训练的时候batch在小于1000次时每100次保存模型,大于1000后每10000次保存一次模型。可以通过修改/examples/detector.c中的train_detector函数来自己决定多少张图保存一次模型。

5.假设steps = 10000 , scale = .1 ,那意思就是迭代到10000次时学习率衰减10倍。如果调整max_baches的大小,需要同时调整steps,而scale可以自己决定修不修改。

6.训练的时候若数据集小目标较少,106层会大概率输出nan,这是数据集的问题。如果数据集没有问题,可以通过调大batch或者调小learning_rate来解决。(yolo的训练调参略烦)

7.github上暂时还没有发现在pytorch框架下较好用的训练代码,尝试着跑了两个,效果不好,所以还是使用darknet来进行训练。

8.使用voc_label.py输出的是绝对路径。

9.训练的时候用 ./darknet detector train cfg/voc.data cfg/yolov3-voc.cfg darknet53.conv.74 2>1 | tee person_train.txt 保存训练内容

10.由于数据集的问题没有小目标,尝试使用三个数据集一起训练但大幅输出nan,表示训练很糟糕。所以在原有第一个数据集训练最后保存的模型的基础上,进行后续训练。也就是把预训练权重换成自己的xxx.weights,训练的输出暂时看起来较为正常,等训练完成了看结果好坏。(同时需要调整cfg文件的max_batches,比如第一次训练完保存的是100000次,生成了final.weights,那么接下去训练就需要把cfg调大超过10w次,不然会直接保存。)

YOLO 从数据集制作到训练的更多相关文章

  1. 图像分割实验:FCN数据集制作,网络模型定义,网络训练(提供数据集和模型文件,以供参考)

    论文:<Fully Convolutional Networks for Semantic Segmentation> 代码:FCN的Caffe 实现 数据集:PascalVOC 一 数据 ...

  2. 小白也能弄得懂的目标检测YOLO系列之YOLOv1网络训练

    上期给大家介绍了YOLO模型的检测系统和具体实现,YOLO是如何进行目标定位和目标分类的,这期主要给大家介绍YOLO是如何进行网络训练的,话不多说,马上开始! 前言: 输入图片首先被分成S*S个网格c ...

  3. Mask-RCNN数据集制作

    转自https://blog.csdn.net/pingushen2100/article/details/80513043 一.Mask-RCNN数据集 1.1 训练Mask-RCNN用的到的文件有 ...

  4. 【猫狗数据集】pytorch训练猫狗数据集之创建数据集

    猫狗数据集的分为训练集25000张,在训练集中猫和狗的图像是混在一起的,pytorch读取数据集有两种方式,第一种方式是将不同类别的图片放于其对应的类文件夹中,另一种是实现读取数据集类,该类继承tor ...

  5. 转载:VOC2007数据集制作

    转载自:https://blog.csdn.net/gaohuazhao/article/details/60871886 另外,可参考:https://blog.csdn.net/dcxhun3/a ...

  6. Fast RCNN 训练自己的数据集(3训练和检测)

    转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ https://github.com/YihangLou/fas ...

  7. 使用LAP数据集进行年龄训练及估计

    一.背景 原本是打算按<DEX Deep EXpectation of apparent age from a single image>进行表面年龄的训练,可由于IMDB-WIKI的数据 ...

  8. 基于MNIST数据集使用TensorFlow训练一个包含一个隐含层的全连接神经网络

    包含一个隐含层的全连接神经网络结构如下: 包含一个隐含层的神经网络结构图 以MNIST数据集为例,以上结构的神经网络训练如下: #coding=utf-8 from tensorflow.exampl ...

  9. 基于MNIST数据集使用TensorFlow训练一个没有隐含层的浅层神经网络

    基础 在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的.具体结构如下: 我们用此网络结构基于MNIST数据集(参考②)进行训 ...

随机推荐

  1. Spring,SpringMvc配置常见的坑,注解的使用注意事项,applicationContext.xml和spring.mvc.xml配置注意事项,spring中的事务失效,事务不回滚原因

    1.Spring中的applicationContext.xml配置错误导致的异常 异常信息: org.apache.ibatis.binding.BindingException: Invalid ...

  2. Reinforcement Learning: An Introduction读书笔记(2)--多臂机

     > 目  录 <  k-armed bandit problem Incremental Implementation Tracking a Nonstationary Problem ...

  3. JS函数浅析(一)

    1.万物皆为对象 提起函数首先要知道对象,而对象又是js数据类型中的一种,所以我们从头开始. 1)javascript数据类型有哪些?          原始数据类型:number,undefined ...

  4. mac gulp: command not found

    mac下执行gulp的时候报错:gulp: command not found 1.查看npm的安装目录 npm root 2.如果不是/usr/local , 说明未全局安装,执行 sudo npm ...

  5. Elasticsearch Search APIs

    Elasticsearch Search APIs By:授客 QQ:1033553122 1. 搜索 1 在单个索引的所有类型中搜索 1 在单个索引的指定类型中搜索 1 在多个指定的索引中搜索 1 ...

  6. C# 实现中国象棋【棋盘,棋子】

    本文是利用C# 实现中国象棋的棋盘绘制,以及初始化布局,并不实现中国象棋的对弈逻辑.仅供学习参考使用. 思路: 绘制中国象棋棋盘,竖线九条,横线十条.再中间绘制‘楚河’,‘汉界’ . 绘制棋子,然后将 ...

  7. Android项目实战(四十):Andoird 7.0+ 安装APK适配

    首先看一下安装apk文件的代码 /** * 通过隐式意图调用系统安装程序安装APK */ public static void install(Context context) { Intent in ...

  8. 深圳市共创力咨询为某大型上市企业提供两天的UCD内训与辅导服务!

    2017年5月23和24日两天,深圳市共创力咨询为国内某大型上市企业提供了为期两天的内训与辅导服务.本次执行培训与辅导任务的是UCD(基于用户体验的设计)资深顾问蔷薇女士.蔷薇老师分别从UCD理论.U ...

  9. Docker Compose 安装 on centos7

    本文演示如何在CentOS7上安装Docker Compose. 1 在线安装 1.1 下载安装包 $ curl -L https://github.com/docker/compose/releas ...

  10. Spark数据倾斜及解决方案

    一.场景 1.绝大多数task执行得都非常快,但个别task执行极慢.比如,总共有100个task,97个task都在1s之内执行完了,但是剩余的task却要一两分钟.这种情况很常见. 2.原本能够正 ...