POJ 3522 Slim Span(极差最小生成树)
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 9546 | Accepted: 5076 |
Description
Given an undirected weighted graph G, you should find one of spanning trees specified as follows.
The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e).
A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.
Your job is to write a program that computes the smallest slimness.
Input
The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
| n | m | |
| a1 | b1 | w1 |
| ⋮ | ||
| am | bm | wm |
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. akand bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).
Output
For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.
Sample Input
4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0
Sample Output
1
20
0
-1
-1
1
0
1686
50 思路:
求一个生成树,要求生成树的各边权值极差最小。
一开始想到的Prim,枚举某一个点的每一条边,接下来的扩展尽可能往这条边靠,想了一下,有些许困难。
原因是一个点边的扩展可能有多条,所以不知道我们应该下一步究竟要选那些边。
于是去用kruskal,也是枚举边,就是枚举每一条边,作为起始的第一条边,以此生成最小生成树,比较每一个生成树的极差。
比起prim,kruskal好写一点。。。 代码
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cstdio>
using namespace std;
int f[10086];
struct node
{
int x,y;
int w;
}e[10086];
int n,m;
const int inf = 2100000000;
bool cmp(node a,node b)
{
return a.w<b.w;
} int getf(int t)
{
if(t==f[t]){return t;}
return f[t]=getf(f[t]);
} bool Merge(int a,int b)
{
int s = getf(a);
int t = getf(b);
if(s==t){
return false;
}
else{
f[t]=s;
}
} int Kruskal(int s)
{
int maxx=0;
int num = 1;
for(int i=s;i<=m;i++){
if(Merge(e[i].x,e[i].y)){
maxx=e[i].w;num++;
}
}
if(num==n)return maxx-e[s].w;
else return -1;
} void init()
{
for(int i=1;i<=n;i++){
f[i]=i;
}
} int main()
{
while(scanf("%d%d",&n,&m)!=EOF&&n+m){
for(int i=1;i<=m;i++){
scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].w);
}
sort(e+1,e+m+1,cmp);
int ans=inf;
for(int i=1;i<=m;i++){
init();
int ansi=Kruskal(i);
if(ansi==-1){break;}
ans=min(ans,ansi);
}
if(ans==inf){printf("-1\n");}
else printf("%d\n",ans);
}
}
POJ 3522 Slim Span(极差最小生成树)的更多相关文章
- POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7102 Accepted: 3761 Descrip ...
- poj 3522 Slim Span (最小生成树kruskal)
http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions ...
- POJ 3522 Slim Span 最小差值生成树
Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...
- POJ 3522 Slim Span 最小生成树,暴力 难度:0
kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...
- POJ 3522 - Slim Span - [kruskal求MST]
题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...
- POJ 3522 Slim Span
题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...
- POJ 3522 Slim Span 暴力枚举 + 并查集
http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...
- POJ 3522 Slim Span (Kruskal枚举最小边)
题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...
- POJ-3522 Slim Span(最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 8633 Accepted: 4608 Descrip ...
随机推荐
- Missing artifact com.oracle:ojdbc6:jar:11.2.0.3 Maven中不能引入ojdbc解决方法,错误
今天从服务器检出Maven项目的时候,遇到了一个问题,就是在pom.xml中引入ojdbc的jar包的时候出错了,提示是Missing artifact com.oracle:ojdbc6:jar:1 ...
- Python学习之路—————day04
今日内容: 1. 循环语句 1.1 if判断 1.2 while循环 1.3 for循环 一.if判断 语法一: if 条件 代码块1 代码块2 代码块3 # 例: sex='female' age= ...
- table2excel使用
原table2excel代码 /* * 采用jquery模板插件——jQuery Boilerplate * * Made by QuJun * 2017/01/10 */ //table2excel ...
- 离线安装Python包hickle,easydict
安装hickle source: https://github.com/telegraphic/hickle 1. cd to your downloaded hickle directory 2. ...
- Microsoft Bot Framework with LUIS
今年微软的编程之美的主题是“对话即平台”,“人工智能”,要求参赛选手用到Bot Framework与Cognitive Services. 大多数人应该对这两个技术都不怎么熟悉吧,我就在这里写写自己所 ...
- h5 打开 app
目前只支持在浏览器中打开,如果非浏览器,例如 微信 支付宝 钉钉 第三方 app 中会弹出下载页面 schemeUrl 为 和app 约定url openApp() { /* 小希学生端 aoji ...
- PHP——emjoin表情存入数据库
前言 还有一种解决的方法是更改数据库,这里就不写了,这里直接对emoji进行转码 代码 mb_strlen() | strlen() | rawurlencode() | rawurldecode() ...
- C# Timer 的区别
首先,我们看一下 3种Timer 1.System.Threading.Timer 2.System.Timers.Timer 3.System.Windows.Forms.Timer 主要区别,其实 ...
- 二叉搜索树(BST)详解
前言:平衡树的前置知识吧 二叉搜索树的定义: 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: (1)若左子树不空,则左子树上所有结点的值均小于或等于它的根节点的值: (2)若右子树不空,则右子 ...
- 用keras实现基本的文本分类任务
数据集介绍 包含来自互联网电影数据库的50000条影评文本,对半拆分为训练集和测试集.训练集和测试集之间达成了平衡,意味着它们包含相同数量的正面和负面影评,每个样本都是一个整数数组,表示影评中的字词. ...