POJ 3522 Slim Span(极差最小生成树)
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 9546 | Accepted: 5076 |
Description
Given an undirected weighted graph G, you should find one of spanning trees specified as follows.
The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e).
A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.
Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).
Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.
Your job is to write a program that computes the smallest slimness.
Input
The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
n | m | |
a1 | b1 | w1 |
⋮ | ||
am | bm | wm |
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. akand bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).
Output
For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.
Sample Input
4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0
Sample Output
1
20
0
-1
-1
1
0
1686
50 思路:
求一个生成树,要求生成树的各边权值极差最小。
一开始想到的Prim,枚举某一个点的每一条边,接下来的扩展尽可能往这条边靠,想了一下,有些许困难。
原因是一个点边的扩展可能有多条,所以不知道我们应该下一步究竟要选那些边。
于是去用kruskal,也是枚举边,就是枚举每一条边,作为起始的第一条边,以此生成最小生成树,比较每一个生成树的极差。
比起prim,kruskal好写一点。。。 代码
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cstdio>
using namespace std;
int f[10086];
struct node
{
int x,y;
int w;
}e[10086];
int n,m;
const int inf = 2100000000;
bool cmp(node a,node b)
{
return a.w<b.w;
} int getf(int t)
{
if(t==f[t]){return t;}
return f[t]=getf(f[t]);
} bool Merge(int a,int b)
{
int s = getf(a);
int t = getf(b);
if(s==t){
return false;
}
else{
f[t]=s;
}
} int Kruskal(int s)
{
int maxx=0;
int num = 1;
for(int i=s;i<=m;i++){
if(Merge(e[i].x,e[i].y)){
maxx=e[i].w;num++;
}
}
if(num==n)return maxx-e[s].w;
else return -1;
} void init()
{
for(int i=1;i<=n;i++){
f[i]=i;
}
} int main()
{
while(scanf("%d%d",&n,&m)!=EOF&&n+m){
for(int i=1;i<=m;i++){
scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].w);
}
sort(e+1,e+m+1,cmp);
int ans=inf;
for(int i=1;i<=m;i++){
init();
int ansi=Kruskal(i);
if(ansi==-1){break;}
ans=min(ans,ansi);
}
if(ans==inf){printf("-1\n");}
else printf("%d\n",ans);
}
}
POJ 3522 Slim Span(极差最小生成树)的更多相关文章
- POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7102 Accepted: 3761 Descrip ...
- poj 3522 Slim Span (最小生成树kruskal)
http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions ...
- POJ 3522 Slim Span 最小差值生成树
Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...
- POJ 3522 Slim Span 最小生成树,暴力 难度:0
kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...
- POJ 3522 - Slim Span - [kruskal求MST]
题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...
- POJ 3522 Slim Span
题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...
- POJ 3522 Slim Span 暴力枚举 + 并查集
http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...
- POJ 3522 Slim Span (Kruskal枚举最小边)
题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...
- POJ-3522 Slim Span(最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 8633 Accepted: 4608 Descrip ...
随机推荐
- Google css & Google fonts
最近用某开源模板做提案的时候, 抓包工具老是有外部Request. 问题出在某css中有这么一句: @import url(https://fonts.googleapis.com/css?famil ...
- 三、checkedListBoxControl
一.checkedListBoxControl的使用全选 private void InitDate() { CheckedListBoxItem[] itemArr = { new CheckedL ...
- 为WebRTC 应用部署Turn Server
部署WebRTC 或 SIP p2p 方案时经常会遇到p2p 无法穿透的环境, 这时就是TunServer 的用武之地了. 这里我们使用turnserver-0.7.3 下载confuse依赖库 wg ...
- CSS3 flexbox 布局 ---- flex项目属性介绍
现在介绍用在flex项目上的css 属性,html结构还是用ul, li 结构,不过内容改成1,2,3, 样式的话,直接把给 ul 设display:flex 变成flex 容器,默认主轴的方向为水平 ...
- LTI系统对WSS Processes的作用
本文主要专注讨论LTI系统对WSS Process的影响.WSS Process的主要特性有mean以及correlation,其中correlation特性在滤波器设计,信号检测,信号预测以及系统识 ...
- python 项目目录结构
目录组织方式 关于如何组织一个较好的Python工程目录结构,已经有一些得到了共识的目录结构.在Stackoverflow的这个问题上,能看到大家对Python目录结构的讨论. 这里面说的已经很好了, ...
- 洛谷P1144最短路计数题解
最短路计数 此题还是寻找从1到i点总共有几个最短路且每条边的边长为1,对于这种寻找最短路的个数,我们可以反向搜索,即先用\(SPFA\)预处理出所有点的最短路,然后我们反向记忆化搜索,可以用\(sum ...
- 自学Python3.4-函数分类(匿名函数)
自学Python之路-Python基础+模块+面向对象自学Python之路-Python网络编程自学Python之路-Python并发编程+数据库+前端自学Python之路-django 自学Pyth ...
- Spring点滴五:Spring中的后置处理器BeanPostProcessor讲解
BeanPostProcessor接口作用: 如果我们想在Spring容器中完成bean实例化.配置以及其他初始化方法前后要添加一些自己逻辑处理.我们需要定义一个或多个BeanPostProcesso ...
- 【CF850E】Random Elections(FWT)
[CF850E]Random Elections(FWT) 题面 洛谷 CF 题解 看懂题就是一眼题了... 显然三个人是等价的,所以只需要考虑一个人赢了另外两个人就好了. 那么在赢另外两个人的过程中 ...