传送门:>出错啦<

题意:给你一个整数n,每一次可以随机选择一个n的因子x(包括1和它自己),让n除以x——不停重复此过程,直到n==1. 问n被除到1的期望次数。

解题思路:

  今天刚学的期望Dp,这道题就算入门啦,顺带总结一下期望Dp的做题方法。

  一般的,我们可以设$f[i]$表示从状态i到目标状态的期望次数。因此我们可以先确定本题的目标状态——n变为1. 因此在本题中,我们可以设$f[i]$表示$n==i$时到$n==1$的期望次数。由于目标状态本身到目标状态是根本不用变的,因此先确定$f[1] = 1$

  于是由于最小的已经确定了,我们可以从1开始推:由小的来确定大的。因此我们可以枚举i,再枚举i的所有因子。设i的因子为$a_1, a_2, ..., a_m$,则有:$$f[i] = \frac{f[a_1] + f[a_2] + ... + f[a_m]}{m} + 1$$

  即f[i]可以通过除一次来得到所有的这些因子(是得到这些因子,并不是除掉,想一想为什么),因此$f[i]$变成1的期望就是它变成的所有这些因子的期望的平均值,再加上本次的这个1.

  然而很快会发现,$a_m = i$,$f[i]$总不可能用自己来转移自己吧……因此我们需要对方程进行变形

  一般处理期望这些问题的用得都是实数,所以可以当代数式来做:

  两边同时乘以$m$,$$f[i] * m = f[a_1] + f[a_2] + ... + f[i] + m$$ $$f[i] * (m - 1) = f[a_1] + f[a_2] + ... + f[a_{m-1}] + m$$ $$f[i] = \frac{f[a_1] + f[a_2] + ... + f[a_{m-1}] + m}{m - 1}$$

Code

  要注意的是,直接$O(n^2)$枚举会超时,所以我们可以$O(n\sqrt{n})$,再$O(\sqrt{n})$的时间内搞出所有因子——特判一下完全平方数即可

/*By QiXingzhi*/
#include <cstdio>
#include <cmath>
#include <queue>
#define r read()
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
const int INF = ;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x << ) +(x << ) + c - '', c = getchar();
return x * w;
}
int T,Case,N;
double f[];
inline void Solve(int N){
f[] = 0.0;
double m = 0.0, K = 0.0;
double flg = -1.0;
for(int i = ; i <= N; ++i){
K = 0.0;
m = 0.0;
flg = -1.0;
for(int j = ; j <= floor(sqrt(i)); ++j){
if(i % j == ){
m += 1.0;
K += f[j];
if(i % (i/j) == ){
m += 1.0;
K += f[i/j];
if(i/j == j){
flg = f[j];
}
}
}
}
if(flg != -1.0){
K -= flg;
m -= 1.0;
}
f[i] = (double)(K + m) / (double)(m - );
}
}
int main(){
Solve();
T = r;
while(T--){
N = r;
++Case;
printf("Case %d: %.8lf\n",Case, f[N]);
}
return ;
}

[LightOJ1038] Race to 1 Again的更多相关文章

  1. [算法]概率与期望DP

    前言 前两节主要针对题目分析,没时间的珂以跳过. 初步 首先举一道简单.经典的好题: [Lightoj1038]Race to 1 Again 懒得单独写,安利一下DennyQi同学的博客:https ...

  2. LightOJ - 1038 Race to 1 Again —— 期望

    题目链接:https://vjudge.net/problem/LightOJ-1038 1038 - Race to 1 Again    PDF (English) Statistics Foru ...

  3. Promise.race

    [Promise.race] 返回最先完成的promise var p1 = new Promise(function(resolve, reject) { setTimeout(resolve, 5 ...

  4. golang中的race检测

    golang中的race检测 由于golang中的go是非常方便的,加上函数又非常容易隐藏go. 所以很多时候,当我们写出一个程序的时候,我们并不知道这个程序在并发情况下会不会出现什么问题. 所以在本 ...

  5. 【BZOJ-2599】Race 点分治

    2599: [IOI2011]Race Time Limit: 70 Sec  Memory Limit: 128 MBSubmit: 2590  Solved: 769[Submit][Status ...

  6. hdu 4123 Bob’s Race 树的直径+rmq+尺取

    Bob’s Race Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Probl ...

  7. Codeforces Round #131 (Div. 2) E. Relay Race dp

    题目链接: http://codeforces.com/problemset/problem/214/E Relay Race time limit per test4 secondsmemory l ...

  8. 【多线程同步案例】Race Condition引起的性能问题

    Race Condition(也叫做资源竞争),是多线程编程中比较头疼的问题.特别是Java多线程模型当中,经常会因为多个线程同时访问相同的共享数据,而造成数据的不一致性.为了解决这个问题,通常来说需 ...

  9. Codeforces Round #328 (Div. 2) C. The Big Race 数学.lcm

    C. The Big Race Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/592/probl ...

随机推荐

  1. Python全栈开发之路 【第十七篇】:jQuery的位置属性、事件及案例

    位置属性 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <titl ...

  2. CF每日一练 Codeforces Round #520 (Div. 2)

    比赛过程总结:过程中有事就玩手机了,后面打的状态不是很好,A题理解错题意,表明了内心不在状态,B题想法和思路都是完全正确的,但是并没有写出来,因为自己代码能力不强,思路不是特别清晰,把代码后面写乱了, ...

  3. 将工程改造为SOA架构

    商城是基于soa的架构,表现层和服务层是不同的工程.所以要实现商品列表查询需要两个系统之间进行通信. 流动计算架构 当服务越来越多,容量的评估,小服务资源的浪费等问题逐渐显现,此时需增加一个调度中心基 ...

  4. html中怎么设置性别默认选择

    <html><body> <form action="/example/html/form_action.asp" method="get& ...

  5. 测试python最大递归层次

    转自:https://www.cnblogs.com/xiongdashuai/p/6243372.html python默认的最大递归层数: 运行环境:Windows 7,x64python环境:p ...

  6. jdk下载及环境变量配置

    一.下载 下载链接 二.环境变量:

  7. java 浅拷贝和深拷贝 对象克隆clone

    分一下几点讨论: 为什么要克隆? 如何实现克隆 浅克隆和深克隆 解决多层克隆问题 总结 一:为什么要克隆? 大家先思考一个问题,为什么需要克隆对象?直接new一个对象不行吗? 答案是:克隆的对象可能包 ...

  8. socket FTP-1

    基于socket实现文件的传输以及md5验证 server: import socket import os import hashlib server=socket.socket() server. ...

  9. drf信号量

    Django信号量回顾及drf信号量常用操作 一.在写接口视图时,保存/删除/更新数据前后需要对序列化后的数据进行处理的方法: 1.重写mixins.CreateModelMixin中恩的create ...

  10. mysql 清除大数据表单

    背景:mysql数据库中有个日志表记录高达800多万,影响了mysql的正常业务访问,现需要清理三个月之前的所有数据,大概600多万(大概13G) 方法一:传统delete from xxx,传统,普 ...