icpc 南昌邀请赛网络赛 Max answer
就是求区间和与区间最小值的积的最大值 但是a[i]可能是负的 这就很坑 赛后看了好多dalao的博客 终于a了
这个问题我感觉可以分为两个步骤
第一步是对于每个元素 以它为最小值的最大区间是什么
第二步是找出来在这个区间里面 最大的连续和多少
那么我们怎么找到第一步这个最大区间呢
可以先找这个元素左边第一个比他小的值的下标 和右边第一个比他小的值的下标 这两个下标确定了 最大区间就确定了
怎么找这个下标呢 暴力的话时间复杂度太高 是n^2 需要使用单调栈:
单调栈 顾名思义就是元素都是单调递增或者递减的栈 至于它有什么作用 接着往下看
假如有一个数组a: 3 5 1 6 2
用数组 L 表示a数组里的每一个元素 从自身位置 向左 第一个比它小的元素的位置
那么L就应该是: 0 1 0 3 3 (这里为了方便表示 我让a数组的下标从1开始标记 这样L数组里面 0 就表示左边的数都比他大 1 就表示第一个数比他小 以此类推)
那么我们怎么利用单调栈实现呢?
先将 a[0]赋值为一个极小值 -0x7ffffff,然后将0入栈
对于数组a的每一个元素 进行如下语句:
while(a[S.top()]>=a[i])
S.pop();
l[i] = S.top();
S.push(i);
while语句 保证了栈里面的数据是单调递减的
看不明白没有关系 让我们模拟一下:
i==1时 a[S.top]=a[0]=-0x7ffffff 不进入while循环
所以L[1]=0;
将1入栈 此时的栈:0 1(实际上我们比较的是a[i] 所以逻辑上来讲 此时的栈:a[0] a[1] 也就是 -0x7ffff 3 因为我们需要用到左边的下标值 所以是将下标入栈 这样既可以访问到下标所对应的值 也可以访问下标)
i==2时,a[S.top]=a[1]=3 小于5 还是不进入while循环
L[2]=S.top()=1
将2入栈 此时的栈:0 1 2(-0x7ffff 3 5 )
i==3时,a[S.top]=a[2]=5 大于1
S.pop(),a[S.top]=a[1]=3还是大于1
S.pop(),a[S.top]=a[0]=-0x7ffffff 小于1 结束循环
所以L[3]=0
将3入栈 此时的栈:0 3(-0x7ffff 1)
.........
以此类推
逻辑上栈中的元素(a[i])始终是递减的
这样我们就通过以此循环求出了L数组 也就是找到了之前说的 最大区间的左边界 找右边界也是一样的思路,只是循环的方向不同
好了现在我们完成了第一步 要进行第二步 也就是找每个区间里面的最大连续和(如果a[i]<0的话需要找最小连续和)
如果a[i]均为非负的话就很简单了 肯定是区间越长 连续和越大 但问题是a[i]是可以有负数的
那就需要分情况讨论了
我们可以开4个数组 lmax lmin rmax rmin
lmax 和 rmax 用来记录最大连续和的区间的左右下标
lmin 和 rmin 记录最小的和的左右下标
怎么更新这四个数组呢?
for(i=;i<=n;i++)
{
if(s[i-]-s[lmin[i-]-]>)
lmin[i]=i;
else
lmin[i]=lmin[i-];
if(s[i-]-s[lmax[i-]-]<)
lmax[i]=i;
else
lmax[i]=lmax[i-];
}
s[i]是前i项的和
看代码很容易理解 如果前面几项的和是正的 那就不要他 让lmin[i]=i 如果是负的 那么加上他 这样连续和就会变小
rmax和rmin只需要倒着更新就行
最后别忘了 这四个数组必须是在L数组和R数组的范围内的 相当于第一步是第二步的限制条件:
if(a[i]<)
{
ll=max(l[i]+,lmin[i]);
rr=min(r[i]-,rmin[i]);
}
else
{
ll=max(l[i]+,lmax[i]);
rr=min(r[i]-,rmax[i]);
}
完整ac代码:
#include<bits/stdc++.h> using namespace std; long long i,n,ll,rr,s[],a[],lmin[],lmax[],rmin[],rmax[],l[],r[],ans;
stack<long long> S; int main()
{
cin>>n;
for(i=;i<=n;i++)
{
cin>>a[i];
s[i]=s[i-]+a[i];
}
ans=a[]*a[];
S.push();
a[]=-0x7fffff;
a[n+]=-0x7fffff-;
for(i=;i<=n;i++)
{
while(a[S.top()]>=a[i])
S.pop();
l[i] = S.top();
S.push(i);
}
while(S.size())
S.pop();
S.push(n+);
for(i=n;i>=;i--)
{
while(a[S.top()]>=a[i])
S.pop();
r[i]=S.top();
S.push(i);
}
lmin[]=;
lmax[]=;
rmin[n]=n;
rmax[n]=n;
for(i=;i<=n;i++)
{
if(s[i-]-s[lmin[i-]-]>)
lmin[i]=i;
else
lmin[i]=lmin[i-];
if(s[i-]-s[lmax[i-]-]<)
lmax[i]=i;
else
lmax[i]=lmax[i-];
}
for(i=n-;i>=;i--)
{
if(s[rmin[i+]]-s[i]>)
rmin[i]=i;
else
rmin[i]=rmin[i+];
if(s[rmax[i+]]-s[i]<)
rmax[i]=i;
else
rmax[i]=rmax[i+];
}
for(i=;i<=n;i++)
{
if(a[i]<)
{
ll=max(l[i]+,lmin[i]);
rr=min(r[i]-,rmin[i]);
}
else
{
ll=max(l[i]+,lmax[i]);
rr=min(r[i]-,rmax[i]);
}
ans=max(ans,a[i]*(s[rr]-s[ll-]));
}
cout<<ans; }
icpc 南昌邀请赛网络赛 Max answer的更多相关文章
- 2019 ICPC南昌邀请赛网络赛比赛过程及题解
解题过程 中午吃饭比较晚,到机房lfw开始发各队的账号密码,byf开始读D题,shl电脑卡的要死,启动中...然后听到谁说A题过了好多,然后shl让blf读A题,A题blf一下就A了.然后lfw读完M ...
- icpc 南昌邀请赛网络赛 Subsequence
题目链接:https://nanti.jisuanke.com/t/38232 就是判断输入是不是子序列 没想到贡献了将近十几次罚时..........可以说是菜的真实了 用cin cout超时了 改 ...
- 2019 ICPC南昌邀请赛 网络赛 K. MORE XOR
说明 \(\oplus x\)为累异或 $ x^{\oplus(a)}$为异或幂 题意&解法 题库链接 $ f(l,r)=\oplus_{i=l}^{r} a[i]$ $ g(l,r)=\ ...
- 南昌邀请赛网络赛 D.Match Stick Game(dp)
南昌邀请赛网络赛 D.Match Stick Game 题目传送门 题目就会给你一个长度为n的字符串,其中\(1<n<100\).这个字符串是一个表达式,只有加减运算符,然后输入的每一个字 ...
- 计蒜客 38228. Max answer-线段树维护单调栈(The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer 南昌邀请赛网络赛) 2019ICPC南昌邀请赛网络赛
Max answer Alice has a magic array. She suggests that the value of a interval is equal to the sum of ...
- POJ-2796 & 2019南昌邀请赛网络赛 I. 区间最大min*sum
http://poj.org/problem?id=2796 https://nanti.jisuanke.com/t/38228 背景 给定一个序列,对于任意区间,min表示区间中最小的数,sum表 ...
- 2019ICPC南昌邀请赛网络赛 I. Max answer (单调栈+线段树/笛卡尔树)
题目链接 题意:求一个序列的最大的(区间最小值*区间和) 线段树做法:用单调栈求出每个数两边比它大的左右边界,然后用线段树求出每段区间的和sum.最小前缀lsum.最小后缀rsum,枚举每个数a[i] ...
- 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)
Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...
- 2019南昌邀请赛网络赛:J distance on the tree
1000ms 262144K DSM(Data Structure Master) once learned about tree when he was preparing for NOIP(N ...
随机推荐
- Docker进阶之三:Docker应用场景
场景一:节省项目环境部署时间 1.单项目打包 每次部署项目到测试.生产等环境,都要部署一大堆依赖的软件.工具,而且部署期间出现问题几率很大,不经意就花费了很长时间. Docker主要理念就是环境打包部 ...
- RAC(ReactiveCocoa)介绍(一)
最近在学习RAC,之前在iOS工作中,类之间的传值,无非是block.delegate代理.KVO和Notification等这几种方法.在RAC中,同样具备替代block.delegate代理.KV ...
- 使用.NetCore 控制台演示 熔断 降级(polly)
1.熔断降级的概念: 熔断:我这里有一根长度一米的钢铁,钢铁的熔点1000度(假设),现在我想用力把这根钢铁折弯,但是人的力有限达不到折弯的点,然后我使用火给钢铁加热,每隔一段时间我就会尝试一下是否能 ...
- Convert.ToInt32()和int.Parse()区别
Convert.ToInt32()和int.Parse()都可以数据转换个int类型,区别在于: 1. Convert.ToInt32()将object类类型转换成int类型,例如:Convert.T ...
- 修改phpcms中的评论样式
phpcms中自带的评论插件很好用!但是样式个人感觉丑的狠,百度一下也没能找到解决方式,也许是自己的搜索方式不对,于是自己就研究了研究,这里可以使用两种方法进行修改 方法一: 使用PHPCMS中的ge ...
- js 控制随机数生成概率
基本思路:把Math.random()生成的数看着百分比,然后定义每个整数值取值范围. 'use strict'; export default class GL { /** * 构造函数 * @pa ...
- webpack4.x笔记-配置基本的前端开发环境(一)
webpack的基本使用 webpack 本质上是一个打包工具,它会根据代码的内容解析模块依赖,帮助我们把多个模块的代码打包.借用 webpack 官网的图片: 虽然webpack4.x的版本可以零配 ...
- Python查找指定文件
在当前目录以及当前目录的所有子目录下查找文件名包含指定字符串的文件,并打印出相对路径: import os testfiles = [] testfilepaths = [] L = len(os.p ...
- solr8.0 springboot整合solr(四)
引言: solr搭建起后,就该应用到java后台开发里了,接下来就用springboot整合应用solr 一:引入jar包 <!--solr--> <dependency> & ...
- 在 vue cli3 的项目中配置双服务,模拟 ajax 分页请求
最近安装了下vue cli3版本,与 cli 2 相比,文件少了,以前配置方法也不管用了.demo 中的大量的数据,需要做成 ajax 请求的方式来展示数据,因此,需要启动两个服务,一个用作前端请求, ...