Description

给定 \(2\) 个多项式 \(F(x), G(x)\),请求出 \(F(x) * G(x)\)。

系数对 \(p\) 取模,且不保证 \(p\) 可以分解成 \(p = a \cdot 2^k + 1\) 之形式。

Solution

设 \(m_1=469762049,m_2=998244353,m_3=1004535809​\),有

\[\begin{cases}
x\equiv c_1\pmod{m_1}\\
x\equiv c_2\pmod{m_2}\\
x\equiv c_3\pmod{m_3}
\end{cases}
\]

用中国剩余定理合并前两个同余式,得到

\[\begin{cases}
x\equiv c_3\pmod{m_3}\\
x\equiv c_4\pmod{m_1m_2}
\end{cases}
\]

设 \(x=km_1m_2+c_4\),有

\[km_1m_2+c_4\equiv c_3\pmod{m_3}\\
k\equiv (c_3-c_4)m_1^{-1}m_2^{-1}\pmod{m_3}
\]

设 \(k=am_3+(c_3-c_4)m_1^{-1}m_2^{-1}​\),有

\[x=(am_3+(c_3-c_4)m_1^{-1}m_2^{-1})m_1m_2+c_4\\
x\equiv (c_3-c_4)m_1^{-1}m_2^{-1}m_1m_2+c_4\pmod{m_1m_2m_3}
\]

其中 \(m_1^{-1}m_2^{-1}\) 是在模 \(m_3\) 意义下的。

注意 \(exgcd\) 的返回值可能是负数,要处理一下;在 \(ksm(a, b, p)\) 之前先将 \(a\) 对 \(p\) 取模。

Code

#include <cstdio>
#include <algorithm> typedef long long LL; const int N = 262150;
int a[N], b[N], n, m, nn, mm, pp, R[N], L, p[N], g[N]; LL f[2][N]; int read() {
int x = 0; char c = getchar();
while (c < '0' || c > '9') c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + (c ^ 48), c = getchar();
return x;
}
void exgcd(LL a, LL b, LL &x, LL &y) {
if (!b) { x = 1, y = 0; return; }
exgcd(b, a % b, y, x), y -= a / b * x;
}
LL ksm(LL a, LL b, LL p) {
LL res = 1;
for (; b; b >>= 1, a = 1LL * a * a % p)
if (b & 1) res = 1LL * res * a % p;
return res;
}
LL mul(LL a, LL b, LL p) {
LL res = 0; int f = 1;
if (a < 0) a = -a, f = -f; if (a >= p) a %= p;
if (b < 0) b = -b, f = -f; if (b >= p) b %= p;
for (; b; b >>= 1, a += a + a < p ? a : a - p)
if ((b & 1) && (res += a) >= p) res -= p;
return res * f;
}
void NTT(LL *A, int f, int t) {
for (int i = 0; i < n; ++i) if (i < R[i]) std::swap(A[i], A[R[i]]);
for (int i = 1; i < n; i <<= 1) {
int wn = ksm(f ? 3 : g[t], (p[t] - 1) / (i << 1), p[t]);
for (int j = 0, r = i << 1; j < n; j += r) {
int w = 1;
for (int k = 0; k < i; ++k, w = 1LL * w * wn % p[t]) {
int x = A[j + k], y = 1LL * w * A[i + j + k] % p[t];
A[j + k] = (x + y) % p[t], A[i + j + k] = (x - y + p[t]) % p[t];
}
}
}
}
void solve(int t, int k) {
LL c[N] = {}, d[N] = {};
for (int i = 0; i <= nn; ++i) c[i] = a[i];
for (int i = 0; i <= mm; ++i) d[i] = b[i];
NTT(c, 1, t), NTT(d, 1, t);
for (int i = 0; i < n; ++i) f[k][i] = 1LL * c[i] * d[i] % p[t];
NTT(f[k], 0, t);
int inv = ksm(n, p[t] - 2, p[t]);
for (int i = 0; i <= m; ++i) f[k][i] = 1LL * f[k][i] * inv % p[t];
}
int main() {
nn = read(), mm = read(), pp = read();
for (int i = 0; i <= nn; ++i) a[i] = read();
for (int i = 0; i <= mm; ++i) b[i] = read();
m = nn + mm; for (n = 1; n <= m; n <<= 1) ++L;
for (int i = 0; i < n; ++i) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
p[1] = 469762049, p[2] = 998244353, p[3] = 1004535809;
g[1] = 156587350, g[2] = 332748118, g[3] = 334845270;
solve(1, 0), solve(2, 1);
LL mod = 1LL * p[1] * p[2], x, y;
exgcd(p[1], p[2], x, y), x = (x % mod + mod) % mod;
for (int i = 0; i <= m; ++i) f[0][i] = (f[0][i] + mul(mul(x, f[1][i] - f[0][i] + mod, mod), p[1], mod)) % mod;
solve(3, 1);
LL inv = ksm(mod % p[3], p[3] - 2, p[3]);
for (int i = 0; i <= m; ++i) printf("%lld ", (mul(((f[1][i] - f[0][i]) % p[3] + p[3]) * inv % p[3], mod, pp) + f[0][i]) % pp);
return 0;
}

[Luogu 4245] 任意模数NTT的更多相关文章

  1. BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)

    第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以 ...

  2. 【模板】任意模数NTT

    题目描述: luogu 题解: 用$fft$水过(什么$ntt$我不知道). 众所周知,$fft$精度低,$ntt$处理范围小. 所以就有了任意模数ntt神奇$fft$! 意思是这样的.比如我要算$F ...

  3. 【知识总结】多项式全家桶(三)(任意模数NTT)

    经过两个月的咕咕,"多项式全家桶" 系列终于迎来了第三期--(雾) 上一篇:[知识总结]多项式全家桶(二)(ln和exp) 先膜拜(伏地膜)大恐龙的博客:任意模数 NTT (在页面 ...

  4. 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)

    再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...

  5. 任意模数NTT

    任意模数\(NTT\) 众所周知,为了满足单位根的性质,\(NTT\)需要质数模数,而且需要能写成\(a2^{k} + r\)且\(2^k \ge n\) 比较常用的有\(998244353,1004 ...

  6. [洛谷P4245]【模板】任意模数NTT

    题目大意:给你两个多项式$f(x)$和$g(x)$以及一个模数$p(p\leqslant10^9)$,求$f*g\pmod p$ 题解:任意模数$NTT$,最大的数为$p^2\times\max\{n ...

  7. MTT:任意模数NTT

    MTT:任意模数NTT 概述 有时我们用FFT处理的数据很大,而模数可以分解为\(a\cdot 2^k+1\)的形式.次数用FFT精度不够,用NTT又找不到足够大的模数,于是MTT就应运而生了. MT ...

  8. Luogu 4245 【模板】任意模数NTT

    这个题还有一些其他的做法,以后再补,先记一下三模数$NTT$的方法. 发现这个题不取模最大的答案不会超过$10^5 \times 10^9 \times 10^9 = 10^{23}$,也就是说我们可 ...

  9. 洛谷 4245 【模板】任意模数NTT——三模数NTT / 拆系数FFT

    题目:https://www.luogu.org/problemnew/show/P4245 三模数NTT: 大概是用3个模数分别做一遍,用中国剩余定理合并. 前两个合并起来变成一个 long lon ...

随机推荐

  1. 前端知识复习:Html DIV 图文混排(文字放在图片下边)

    Html知识复习之图文混排 练习练习基础 先上效果图: 废话不多说,直接贴代码: <!DOCTYPE html> <html xmlns="http://www.w3.or ...

  2. Java 原始模型(Prototype)模式

    一.什么是原型模式: 通过给出一个原型对象指明所要创建的对象的类型,然后通过复制这个原型对象来获取的更多的同类型的对象. 在Java语言中,支持原型模式,所有的对象都继承自Object对象,Objec ...

  3. SAP MM '独立/集中'等于1的MTS物料MRP运行后合并需求触发PR

    SAP MM '独立/集中'等于1的MTS物料MRP运行后合并需求触发PR Test data 独立与集中: 1 (仅个别需求) STO 1, 这是一个公司间STO,从国内生产基本转入香港贸易公司, ...

  4. 超简单的canvas绘制地图

        本文使用geojson数据,通过缩放和平移把地图的地理坐标系转换canvas的屏幕坐标系,然后将转换后的数据绘制到canvas上.     首先要计算数据的最大最小值,遍历所有坐标点的最大最小 ...

  5. 生鲜配送管理系统_升鲜宝V2.0 小标签打印功能【代配送商品打印小标签功能】说明_15382353715

    小标签打印说明 小标签打印可以打印本系统的订单商品数量,也可以把外部的订单商品导入本系统进行打印. 打印本系统中的订单商品操作说明[上篇文章已经讲解相关的操作说明] 打印本系统之外的订单商品明细清单 ...

  6. 从零学习Fluter(六):Flutter仿boss直聘v1.0重构

    今天继续学习flutter,觉得这个优秀的东西,许多方面还需要完善,作为一个后来者,要多向别人学习.俗话说,“学无先后,达者为师”.今天呢,我又重新把flutter_boss这个项目代码 从头到脚看了 ...

  7. 27号华为笔试(三道ac两道)

    三道题目case:100,100,0: 三个题目: 前两个都全部ac了,第三题没时间: 记录一下大概的思路: 第一题 主要通过Java中的字符串处理函数:然后控制字符串输入格式: 卡bug的点: 1: ...

  8. linux 子系统折腾记 (三)

    所以说,英文真是个好东西,很多资料都只有英文版本,要是不懂英文,甚至你不知道这个资料的存在,更别提用蹩脚的翻译软件去翻译了. wsl 的资料:https://docs.microsoft.com/zh ...

  9. vsftpd.configro

    mmp卸载了vsftpd后 配置文件没了 安装也没有 留个做备份 嘿嘿 原始的: # Please see vsftpd.conf. for all compiled in defaults. # # ...

  10. iBatis第四章:动态SQL的用法

    一.什么是动态SQL,以及使用动态SQL的好处 所谓动态SQL,是针对静态SQL而言的,静态SQL的SQL语句是固定的,使用动态SQL是为了增强SQL的灵活性和复用性,可以用一个动态SQL达到在不同条 ...