题目分析:

首先跑个暴力,求一下有多少种状态,发现只有18xxxx种,然后每个状态有10的转移,所以复杂度大约是200w,然后利用进制转换的技巧求一下每个状态的十进制码就行了。

代码:

 #include<bits/stdc++.h>
using namespace std; int n,m; int A[][],B[][];
int kk[][]; // after number int f[],arr[]; int sit[]; int calc(){
int ans = ;
for(int i=;i<=n;i++){ans += kk[i][sit[i]-];}
return ans+;
} int dfs(int dr){
int z = calc();
if(arr[z]) return f[z];
arr[z] = ; f[z] = -1e9;
for(int i=;i<=n;i++){
if(sit[i] == m) continue;
if(i != && sit[i] == sit[i-]) continue;
sit[i]++;
f[z] = max(f[z],(dr==?A[i][sit[i]]:B[i][sit[i]])-dfs(dr^));
sit[i]--;
}
return f[z];
} void read(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) for(int j=;j<=m;j++) scanf("%d",&A[i][j]);
for(int i=;i<=n;i++) for(int j=;j<=m;j++) scanf("%d",&B[i][j]);
} void work(){
for(int i=;i<=m;i++) kk[n+][i] = ;
for(int i=n;i>=;i--){
kk[i][] = ;
for(int j=;j<=m;j++) kk[i][j] = kk[i][j-]+kk[i+][j];
}
f[kk[][m]] = ; arr[kk[][m]] = ;
f[] = dfs();
printf("%d\n",f[]);
} int main(){
read();
work();
return ;
}

Luogu4363 [九省联考2018]一双木棋chess 【状压DP】【进制转换】的更多相关文章

  1. [BZOJ5248] 2018九省联考 D1T1 一双木棋 | 博弈论 状压DP

    题面 菲菲和牛牛在一块\(n\)行\(m\)列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落子,直到填满棋盘时结束. 落子的规则是:一个格子可以落子 ...

  2. 洛谷 P4363 [九省联考2018]一双木棋chess 解题报告

    P4363 [九省联考2018]一双木棋chess 题目描述 菲菲和牛牛在一块\(n\)行\(m\)列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落 ...

  3. luogu P4363 [九省联考2018]一双木棋chess

    传送门 对抗搜索都不会,我真是菜死了qwq 首先根据题目条件,可以发现从上到下每一行的棋子数是单调不增的,然后n m都比较小,如果把状态搜出来,可以发现合法状态并不多,所以可以用一个11进制数表示状态 ...

  4. [九省联考2018]一双木棋chess

    题解: 水题吧 首先很显然的是状压或者搜索 考虑一下能不能状压吧 这个东西一定是长成三角形的样子的 所以是可以状压的 相邻两位之间有几个0代表他们差几 这样最多会有2n 然后就可以转移了 由于之前对博 ...

  5. 【题解】Luogu P4363 [九省联考2018]一双木棋chess

    原题传送门 这道题珂以轮廓线dp解决 经过推导,我们珂以发现下一行的棋子比上一行的棋子少(或等于),而且每一行中的棋子都是从左向右依次排列(从头开始,中间没有空隙) 所以每下完一步棋,棋盘的一部分是有 ...

  6. P4363 [九省联考2018]一双木棋chess

    思路 容易发现只能在轮廓线的拐点处落子,所以棋盘的状态可以用一个n+m长度的二进制数表示 转移就是10变成01 代码 #include <cstdio> #include <algo ...

  7. [九省联考2018] 一双木棋 chess

    Description 菲菲和牛牛在一块n 行m 列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落子,直到填满棋盘时结束. 落子的规则是:一个格子可 ...

  8. BZOJ.5248.[九省联考2018]一双木棋chess(对抗搜索 记忆化)

    BZOJ 洛谷P4363 [Update] 19.2.9 重做了遍,感觉之前写的有点扯= = 首先棋子的放置情况是阶梯状的. 其次,无论已经放棋子的格子上哪些是黑棋子哪些是白棋子,之前得分如何,两人在 ...

  9. [九省联考 2018]一双木棋chess

    Description 题库链接 给出一个 \(n\times m\) 的棋盘,棋盘的每个格子有两个权值 \(A,B\) . Alice 和 Bob 轮流操作在棋盘上放棋子,一个格子能放棋子的前提条件 ...

随机推荐

  1. js对象数组(JSON) 根据某个共同字段 分组

    首先判断 var arr = [ {"id":"1001","name":"值1","value": ...

  2. ajax的嵌套需要注意的问题

    当我们要嵌套ajax的时候,需要注意 异步/同步 的处理,一般是要设置成同步,如果是异步,那么被嵌套的ajax的操作很可能获取不到想要的值,因为他可能比嵌套他的ajax跑的更早 在ajax中有一个as ...

  3. SQLServer存储过程编写规则

    SQLServer编写规则 1.  存储过程 a)         在程序应用中,对于数据库“写”操作的功能通过存储过程来实现. b)        存储过程命名: SP_+表名(+功能名) 对于一个 ...

  4. Ubuntu 16.04 nvidia-smi报错(重装Nvidia驱动)

    之前因为学习TensorFlow,所以在自己的Ubuntu上安装了cuda,cudnn以及Nvidia驱动.但可能是由于自己经常不注重正常关闭自己的Ubuntu,这就导致了一个问题: 某天在查看自己的 ...

  5. 如何利用U盘重装系统

    第一步,下载系统镜像 推荐在msdn上面下载,因为大多数都是 Microsoft 纯净原版镜像,如果要安装的是纯净版系统请先看第六步,然后才看第二步 第二步,下载U盘PE工具 推荐使用大白菜或者老毛桃 ...

  6. 每天五分钟-javascript数据类型

    javascript数据类型分为基本数据类型与复杂数据类型 基本数据类型包括:string,number,boolean,null,undefined,symbol(es6) 复杂数据类型包括:obj ...

  7. Java日期的一些基本处理

    今天工作中用到一些日期的处理.这里做一点浅显的整理. 1.日期的加减: 日期加减一般用到Calendar这个类比较好.这样不用处理12月加一个月和28.30.31.加一天等问题 String last ...

  8. golang 日期时间处理

    package main import ( "fmt" "time" ) func main() { fmt.Println(time.Now()) //显示时 ...

  9. A Diversity-Promoting Objective Function for Neural Conversation Models论文阅读

    本文来自李纪为博士的论文 A Diversity-Promoting Objective Function for Neural Conversation Models 1,概述 对于seq2seq模 ...

  10. 毕业设计(4):基于MicroPython的超声波倒车雷达系统

    前言 倒车雷达是汽车驻车或者倒车时的安全辅助装置,能以声音或者更为直观的显示告知驾驶员周围障碍物的情况,解除了驾驶员驻车.倒车和起动车辆时前后左右探视所引起的困扰,并帮助驾驶员扫除了视野死角和视线模糊 ...