Luogu4363 [九省联考2018]一双木棋chess 【状压DP】【进制转换】
题目分析:
首先跑个暴力,求一下有多少种状态,发现只有18xxxx种,然后每个状态有10的转移,所以复杂度大约是200w,然后利用进制转换的技巧求一下每个状态的十进制码就行了。
代码:
#include<bits/stdc++.h>
using namespace std; int n,m; int A[][],B[][];
int kk[][]; // after number int f[],arr[]; int sit[]; int calc(){
int ans = ;
for(int i=;i<=n;i++){ans += kk[i][sit[i]-];}
return ans+;
} int dfs(int dr){
int z = calc();
if(arr[z]) return f[z];
arr[z] = ; f[z] = -1e9;
for(int i=;i<=n;i++){
if(sit[i] == m) continue;
if(i != && sit[i] == sit[i-]) continue;
sit[i]++;
f[z] = max(f[z],(dr==?A[i][sit[i]]:B[i][sit[i]])-dfs(dr^));
sit[i]--;
}
return f[z];
} void read(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) for(int j=;j<=m;j++) scanf("%d",&A[i][j]);
for(int i=;i<=n;i++) for(int j=;j<=m;j++) scanf("%d",&B[i][j]);
} void work(){
for(int i=;i<=m;i++) kk[n+][i] = ;
for(int i=n;i>=;i--){
kk[i][] = ;
for(int j=;j<=m;j++) kk[i][j] = kk[i][j-]+kk[i+][j];
}
f[kk[][m]] = ; arr[kk[][m]] = ;
f[] = dfs();
printf("%d\n",f[]);
} int main(){
read();
work();
return ;
}
Luogu4363 [九省联考2018]一双木棋chess 【状压DP】【进制转换】的更多相关文章
- [BZOJ5248] 2018九省联考 D1T1 一双木棋 | 博弈论 状压DP
题面 菲菲和牛牛在一块\(n\)行\(m\)列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落子,直到填满棋盘时结束. 落子的规则是:一个格子可以落子 ...
- 洛谷 P4363 [九省联考2018]一双木棋chess 解题报告
P4363 [九省联考2018]一双木棋chess 题目描述 菲菲和牛牛在一块\(n\)行\(m\)列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落 ...
- luogu P4363 [九省联考2018]一双木棋chess
传送门 对抗搜索都不会,我真是菜死了qwq 首先根据题目条件,可以发现从上到下每一行的棋子数是单调不增的,然后n m都比较小,如果把状态搜出来,可以发现合法状态并不多,所以可以用一个11进制数表示状态 ...
- [九省联考2018]一双木棋chess
题解: 水题吧 首先很显然的是状压或者搜索 考虑一下能不能状压吧 这个东西一定是长成三角形的样子的 所以是可以状压的 相邻两位之间有几个0代表他们差几 这样最多会有2n 然后就可以转移了 由于之前对博 ...
- 【题解】Luogu P4363 [九省联考2018]一双木棋chess
原题传送门 这道题珂以轮廓线dp解决 经过推导,我们珂以发现下一行的棋子比上一行的棋子少(或等于),而且每一行中的棋子都是从左向右依次排列(从头开始,中间没有空隙) 所以每下完一步棋,棋盘的一部分是有 ...
- P4363 [九省联考2018]一双木棋chess
思路 容易发现只能在轮廓线的拐点处落子,所以棋盘的状态可以用一个n+m长度的二进制数表示 转移就是10变成01 代码 #include <cstdio> #include <algo ...
- [九省联考2018] 一双木棋 chess
Description 菲菲和牛牛在一块n 行m 列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落子,直到填满棋盘时结束. 落子的规则是:一个格子可 ...
- BZOJ.5248.[九省联考2018]一双木棋chess(对抗搜索 记忆化)
BZOJ 洛谷P4363 [Update] 19.2.9 重做了遍,感觉之前写的有点扯= = 首先棋子的放置情况是阶梯状的. 其次,无论已经放棋子的格子上哪些是黑棋子哪些是白棋子,之前得分如何,两人在 ...
- [九省联考 2018]一双木棋chess
Description 题库链接 给出一个 \(n\times m\) 的棋盘,棋盘的每个格子有两个权值 \(A,B\) . Alice 和 Bob 轮流操作在棋盘上放棋子,一个格子能放棋子的前提条件 ...
随机推荐
- AspNetCoreapi 使用 Docker + Centos 7部署
好久没有更新文章了,前段时间写了一系列的文章放到桌面了,想着修修改改,后来系统中勒索病毒了还被公司网络安全的抓到是我电脑,后来装系统文章给装丢了.然后好长一段时间没有写了. 今天记录一下AspNetC ...
- 大数据时代的图表可视化利器——highcharts,D3和百度的echarts
大数据时代的图表可视化利器——highcharts,D3和百度的echarts https://blog.csdn.net/minidrupal/article/details/42153941 ...
- c#实战开发:以太坊钱包快速同步区块和钱包卡死解决方案 (三)
首先以太坊默认的快速同步模式 我们需要先设置当前同步模式内存大小512-2048范围 在服务器配置情况下最大化内存 输入以下命令 geth --fast --cache=2048 最快同步模式也是 保 ...
- Java笔记(day11)
异常:是在运行时期发生的不正常情况. 异常类:在java中用类的形式对不正常情况进行了描述和封装对象,描述不正常的情况的类. 异常就是java通过面向对象的思想将问题封装成了对象.用异常类对其进行描述 ...
- vue2.0 实现全选和全不选
实现思路: 1. v-model 一个收集所有input(除全选框外)数组checkModel ,vue会动态将其checked为true的input的value值存入数组checkModel里 2 ...
- Django之随机图形验证码
实现效果:点击右边图片验证码会变 前端代码: <div class="container"> <div class="row"> < ...
- 一起学Android之GridView
本文以一个简单的小例子,简述Android开发中GridView的常见应用,仅供学习分享使用. 概述 GiridView是一个表格显示资源的控件,可以在两个可滚动的方向上显示.列表项的资源会通过Lis ...
- android studio gradle 更新方法。
Android studio更新 第一步:在你所在项目文件夹下:你项目根目录gradlewrapper gradle-wrapper.properties (只要在打开项目的时候选OK,这个文件就 ...
- 智能指针std::weak_ptr
std::weak_ptr 避免shared_ptr内存泄漏的利器.
- 【SpringBoot笔记】SpringBoot整合Druid数据连接池
废话少说,按SpringBoot的老套路来. [step1]:添加依赖 <!-- 数据库连接池 --> <dependency> <groupId>com.alib ...