【深度学习篇】--Seq2Seq模型从初识到应用
一、前述
架构:
问题:
1、压缩会损失信息
2、长度会影响准确率
解决办法:
Attention机制:聚焦模式
“高分辨率”聚焦在图片的某个特定区域并以“低分辨率”,感知图像的周边区域的模式。通过大量实验证明,将attention机制应用在机器翻译,摘要生成,阅读理解等问题上,取得的成效显著。
比如翻译:“”知识”只是聚焦前两个字。
每个C取不同的概率和值:
Bucket机制:
正常情况要对所有句子进行补全,Bucket可以先分组,再计算。比如第一组计算输入[0-10],输出[0-10]。
【深度学习篇】--Seq2Seq模型从初识到应用的更多相关文章
- 时间序列深度学习:seq2seq 模型预测太阳黑子
目录 时间序列深度学习:seq2seq 模型预测太阳黑子 学习路线 商业中的时间序列深度学习 商业中应用时间序列深度学习 深度学习时间序列预测:使用 keras 预测太阳黑子 递归神经网络 设置.预处 ...
- 深度学习的seq2seq模型——本质是LSTM,训练过程是使得所有样本的p(y1,...,yT‘|x1,...,xT)概率之和最大
from:https://baijiahao.baidu.com/s?id=1584177164196579663&wfr=spider&for=pc seq2seq模型是以编码(En ...
- 深度学习之seq2seq模型以及Attention机制
RNN,LSTM,seq2seq等模型广泛用于自然语言处理以及回归预测,本期详解seq2seq模型以及attention机制的原理以及在回归预测方向的运用. 1. seq2seq模型介绍 seq2se ...
- 深度学习教程 | Seq2Seq序列模型和注意力机制
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/35 本文地址:http://www.showmeai.tech/article-det ...
- 深度学习 vs. 概率图模型 vs. 逻辑学
深度学习 vs. 概率图模型 vs. 逻辑学 摘要:本文回顾过去50年人工智能(AI)领域形成的三大范式:逻辑学.概率方法和深度学习.文章按时间顺序展开,先回顾逻辑学和概率图方法,然后就人工智能和机器 ...
- 【转】[caffe]深度学习之图像分类模型AlexNet解读
[caffe]深度学习之图像分类模型AlexNet解读 原文地址:http://blog.csdn.net/sunbaigui/article/details/39938097 本文章已收录于: ...
- [caffe]深度学习之图像分类模型VGG解读
一.简单介绍 vgg和googlenet是2014年imagenet竞赛的双雄,这两类模型结构有一个共同特点是go deeper.跟googlenet不同的是.vgg继承了lenet以及alexnet ...
- 深度学习之 seq2seq 进行 英文到法文的翻译
深度学习之 seq2seq 进行 英文到法文的翻译 import os import torch import random source_path = "data/small_vocab_ ...
- 深度学习篇——Tensorflow配置(傻瓜安装模式)
前言 如果你是一个完美主义者,那么请绕过此文,请参考<深度学习篇——Tensorflow配置(完美主义模式)> 安装 pip install tensorflow ok,只要不报错,安装就 ...
- 走近深度学习,认识MoXing:初识华为云ModelArts的王牌利器 — MoXing
[摘要] 本文为MoXing系列文章第一篇,主要介绍什么是MoXing,MoXing API的优势以及MoXing程序的基本结构. MoXing的概念 MoXing是华为云深度学习服务提供的网络模型开 ...
随机推荐
- js中的对象创建与继承
对象创建 1.工厂模式 优点:解决了创建多个相似对象的问题 缺点:没有解决对象识别问题:每一个对象都有一套自己的函数,浪费资源 function createPerson(name, age, job ...
- 内连接查询 (select * from a join b on a.id = b.id) 与 关联查询 (select * from a , b where a.id = b.id)的区别
转自https://blog.csdn.net/l690781365/article/details/76261093 1.首先了解 on .where 的执行顺序以及效率? from a join ...
- bzoj5153&uoj348 【WC2018】州区划分
五十分就是裸的O(3^n)子集dp. $$f[S]*{w[S]^{p}}=\sum_{T \in S}{f[T]*{w[S-T]^{p}}}$$ 然后我们考虑优化这个dp,我们发现这是子集卷积的形式, ...
- BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP
BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...
- BZOJ_2693_jzptab_莫比乌斯反演
BZOJ_2693_jzptab_莫比乌斯反演 Description Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的 ...
- Java线程与Linux内核线程的映射关系
Linux从内核2.6开始使用NPTL (Native POSIX Thread Library)支持,但这时线程本质上还轻量级进程. Java里的线程是由JVM来管理的,它如何对应到操作系统的线程是 ...
- sublime 基本的配置
{ "font_size": 14.6, // font size "ignored_packages": [ "Vintage" ], & ...
- js多个元素随机且不重叠分布在页面中
最近,公司要做一个类似挖矿的项目,大概其是当用户登录进入首页后,如果用户有已经生成的原力值,则在其点击原力值后可以类似蚂蚁森林那样收集原力值,当用户将所有的原力值收集完毕后开始提醒用户新的原力值正在生 ...
- MySQL - 高可用性:少宕机即高可用?
我们之前了解了复制.扩展性,接下来就让我们来了解可用性.归根到底,高可用性就意味着 "更少的宕机时间". 老规矩,讨论一个名词,首先要给它下个定义,那么什么是可用性? 1 什么是可 ...
- Polaristech 刘洋:基于 OpenResty/Kong 构建边缘计算平台
2019 年 3 月 23 日,OpenResty 社区联合又拍云,举办 OpenResty × Open Talk 全国巡回沙龙·北京站,Polaristech 技术专家刘洋在活动上做了<基于 ...