必读 | 大规模使用 Apache Kafka 的20个最佳实践

配图来源:书籍《深入理解Kafka》

Apache Kafka是一款流行的分布式数据流平台,它已经广泛地被诸如New Relic(数据智能平台)、Uber、Square(移动支付公司)等大型公司用来构建可扩展的、高吞吐量的、且高可靠的实时数据流系统。例如,在New Relic的生产环境中,Kafka群集每秒能够处理超过1500万条消息,而且其数据聚合率接近1 Tbps。

可见,Kafka大幅简化了对于数据流的处理,因此它也获得了众多应用开发人员和数据管理专家的青睐。然而,在大型系统中Kafka的应用会比较复杂。如果您的consumers无法跟上数据流的话,各种消息往往在未被查看之前就已经消失掉了。同时,它在自动化数据保留方面的限制,高流量的发布+订阅(publish-subscribe,pub/sub)模式等,可能都会影响到您系统的性能。可以毫不夸张地说,如果那些存放着数据流的系统无法按需扩容、或稳定性不可靠的话,估计您经常会寝食难安了。

为了减少上述复杂性,我在此分享New Relic公司为Kafka集群在应对高吞吐量方面的20项最佳实践。我将从如下四个方面进行展开:

  • Partitions(分区)

  • Consumers(消费者)

  • Producers(生产者)

  • Brokers(代理)

针对Partitions的最佳实践

• 了解分区的数据速率,以确保提供合适的数据保存空间。此处所谓“分区的数据速率”是指数据的生成速率。换言之,它是由“平均消息大小”乘以“每秒消息数”得出的。数据速率决定了在给定时间内,所能保证的数据保存空间的大小(以字节为单位)。如果您不知道数据速率的话,则无法正确地计算出满足基于给定时间跨度的数据,所需要保存的空间大小。同时,数据速率也能够标识出单个consumer在不产生延时的情况下,所需要支持的最低性能值。

• 除非您有其他架构上的需要,否则在写topic时请使用随机分区。在您进行大型操作时,各个分区在数据速率上的参差不齐是非常难以管理的。其原因来自于如下三个方面:

  • 首先,“热”(有较高吞吐量)分区上的consumer势必会比同组中的其他consumer处理更多的消息,因此很可能会导致出现在处理上和网络上的瓶颈。

  • 其次,那些为具有最高数据速率的分区,所配置的最大保留空间,会导致topic中其他分区的磁盘使用量也做相应地增长。

  • 第三,根据分区的leader关系所实施的最佳均衡方案,比简单地将leader关系分散到所有broker上,要更为复杂。在同一topic中,“热”分区会“承载”10倍于其他分区的权重。

针对Consumers的最佳实践

如果consumers运行的是比Kafka 0.10还要旧的版本,那么请马上升级。在0.8.x 版中,consumer使用Apache ZooKeeper来协调consumer group,而许多已知的bug会导致其长期处于再均衡状态,或是直接导致再均衡算法的失败(我们称之为“再均衡风暴”)。因此在再均衡期间,一个或多个分区会被分配给同一组中的每个consumer。而在再均衡风暴中,分区的所有权会持续在各个consumers之间流转,这反而阻碍了任何一个consumer去真正获取分区的所有权。

调优consumer的套接字缓冲区(socket buffers),以应对数据的高速流入。在Kafka的0.10.x版本中,参数receive.buffer.bytes的默认值为64 kB。而在Kafka的0.8.x版本中,参数socket.receive.buffer.bytes的默认值为100 kB。这两个默认值对于高吞吐量的环境而言都太小了,特别是如果broker和consumer之间的网络带宽延迟积(bandwidth-delay product)大于局域网(local area network,LAN)时。对于延迟为1毫秒或更多的高带宽的网络(如10 Gbps或更高),请考虑将套接字缓冲区设置为8或16 MB。如果您的内存不足,也至少考虑设置为1 MB。当然,您也可以设置为-1,它会让底层操作系统根据网络的实际情况,去调整缓冲区的大小。但是,对于需要启动“热”分区的consumers来说,自动调整可能不会那么快。

设计具有高吞吐量的consumers,以便按需实施背压(back-pressure)。通常,我们应该保证系统只去处理其能力范围内的数据,而不要超负荷“消费”,进而导致进程中断“挂起”,或出现consume group的溢出。如果是在Java虚拟机(JVM)中运行,consumers应当使用固定大小的缓冲区(请参见Disruptor模式:http://lmax-exchange.github.io/disruptor/files/Disruptor-1.0.pdf),而且最好是使用堆外内存(off-heap)。固定大小的缓冲区能够阻止consumer将过多的数据拉到堆栈上,以至于JVM花费掉其所有的时间去执行垃圾回收,进而无法履行其处理消息的本质工作。

在JVM上运行各种consumers时,请警惕垃圾回收对它们可能产生的影响。例如,长时间垃圾回收的停滞,可能导致ZooKeeper的会话被丢弃、或consumer group处于再均衡状态。对于broker来说也如此,如果垃圾回收停滞的时间太长,则会产生集群掉线的风险。

针对Producers的最佳实践

• 配置producer,以等待各种确认。籍此producer能够获知消息是否真正被发送到了broker的分区上。在Kafka的0.10.x版本上,其设置是acks;而在0.8.x版本上,则为request.required.acks。Kafka通过复制,来提供容错功能,因此单个节点的故障、或分区leader关系的更改不会影响到系统的可用性。如果您没有用acks来配置producer(或称“fire and forget”)的话,则消息可能会悄然丢失。

• 为各个producer配置retries。其默认值为3,当然是非常低的。不过,正确的设定值取决于您的应用程序,即:就那些对于数据丢失零容忍的应用而言,请考虑设置为Integer.MAX_VALUE(有效且最大)。这样将能够应对broker的leader分区出现无法立刻响应produce请求的情况。

• 为高吞吐量的producer,调优缓冲区的大小,特别是buffer.memory和batch.size(以字节为单位)。由于batch.size是按照分区设定的,而producer的性能和内存的使用量,都可以与topic中的分区数量相关联。因此,此处的设定值将取决于如下几个因素:producer数据速率(消息的大小和数量)、要生成的分区数、以及可用的内存量。请记住,将缓冲区调大并不总是好事,如果producer由于某种原因而失效了(例如,某个leader的响应速度比确认还要慢),那么在堆内内存(on-heap)中的缓冲的数据量越多,其需要回收的垃圾也就越多。

• 检测应用程序,以跟踪诸如生成的消息数、平均消息大小、以及已使用的消息数等指标。

针对Brokers的最佳实践

• 在各个brokers上,请压缩topics所需的内存和CPU资源。日志压缩需要各个broker上的堆栈(内存)和CPU周期都能成功地配合实现。而如果让那些失败的日志压缩数据持续增长的话,则会给brokers分区带来风险。您可以在broker上调整log.cleaner.dedupe.buffer.size和log.cleaner.threads这两个参数,但是请记住,这两个值都会影响到各个brokers上的堆栈使用。如果某个broker抛出OutOfMemoryError异常,那么它将会被关闭、并可能造成数据的丢失。而缓冲区的大小和线程的计数,则取决于需要被清除的topic partition数量、以及这些分区中消息的数据速率与密钥的大小。对于Kafka的0.10.2.1版本而言,通过ERROR条目来监控日志清理程序的日志文件,是检测其线程可能出现问题的最可靠方法。

• 通过网络吞吐量来监控brokers。请监控发向(transmit,TX)和收向(receive,RX)的流量,以及磁盘的I/O、磁盘的空间、以及CPU的使用率,而且容量规划是维护群集整体性能的关键步骤。

• 在群集的各个brokers之间分配分区的leader关系。Leader通常会需要大量的网络I/O资源。例如,当我们将复制因子(replication factor)配置为3、并运行起来时,leader必须首先获取分区的数据,然后将两套副本发送给另两个followers,进而再传输到多个需要该数据的consumers上。因此在该例子中,单个leader所使用的网络I/O,至少是follower的四倍。而且,leader还可能需要对磁盘进行读操作,而follower只需进行写操作。

• 不要忽略监控brokers的in-sync replica(ISR)shrinks、under-replicated partitions和unpreferred leaders。这些都是集群中潜在问题的迹象。例如,单个分区频繁出现ISR收缩,则暗示着该分区的数据速率超过了leader的能力,已无法为consumer和其他副本线程提供服务了。

• 按需修改Apache Log4j的各种属性。Kafka的broker日志记录会耗费大量的磁盘空间,但是我们却不能完全关闭它。因为有时在发生事故之后,需要重建事件序列,那么broker日志就会是我们最好的、甚至是唯一的方法。

• 禁用topic的自动创建,或针对那些未被使用的topics建立清除策略。例如,在设定的x天内,如果未出现新的消息,您应该考虑该topic是否已经失效,并将其从群集中予以删除。此举可避免您花时间去管理群集中被额外创建的元数据。

• 对于那些具有持续高吞吐量的brokers,请提供足够的内存,以避免它们从磁盘子系统中进行读操作。我们应尽可能地直接从操作系统的缓存中直接获取分区的数据。然而,这就意味着您必须确保自己的consumers能够跟得上“节奏”,而对于那些延迟的consumer就只能强制broker从磁盘中读取了。

• 对于具有高吞吐量服务级别目标(service level objectives,SLOs)的大型群集,请考虑为brokers的子集隔离出不同的topic。至于如何确定需要隔离的topics,则完全取决于您自己的业务需要。例如,您有一些使用相同群集的联机事务处理(multiple online transaction processing,OLTP)系统,那么将每个系统的topics隔离到不同brokers子集中,则能够有助于限制潜在事件的影响半径。

• 在旧的客户端上使用新的topic消息格式。应当代替客户端,在各个brokers上加载额外的格式转换服务。当然,最好还是要尽量避免这种情况的发生。

• 不要错误地认为在本地主机上测试好broker,就能代表生产环境中的真实性能了。要知道,如果使用复制因子为1,并在环回接口上对分区所做的测试,是与大多数生产环境截然不同的。在环回接口上网络延迟几乎可以被忽略的,而在不涉及到复制的情况下,接收leader确认所需的时间则同样会出现巨大的差异。

其他资源

希望上述各项建议能够有助于您更有效地去使用Kafka。如果您想提高自己在Kafka方面的专业知识,请进一步查阅Kafka配套文档中的“操作”部分,其中包含了有关操作群集等实用信息。此外,Confluent(https://www.confluent.io/)也会定期举行并发布各种在线讨论,以帮助您更好地了解Kafka。

本文英文原文《20 Best Practices for Working With Apache Kafka at Scale》:https://blog.newrelic.com/engineering/kafka-best-practices/

大规模使用 Apache Kafka 的20个最佳实践的更多相关文章

  1. Kafka在大型应用中的 20 项最佳实践

    原标题:Kafka如何做到1秒处理1500万条消息? Apache Kafka 是一款流行的分布式数据流平台,它已经广泛地被诸如 New Relic(数据智能平台).Uber.Square(移动支付公 ...

  2. Spring Boot 自定义kafka 消费者配置 ContainerFactory最佳实践

    Spring Boot 自定义kafka 消费者配置 ContainerFactory最佳实践 本篇博文主要提供一个在 SpringBoot 中自定义 kafka配置的实践,想象这样一个场景:你的系统 ...

  3. Java 异常处理的 20 个最佳实践,你知道几个?

    异常处理是 Java 开发中的一个重要部分,是为了处理任何错误状况,比如资源不可访问,非法输入,空输入等等.Java 提供了几个异常处理特性,以try,catch 和 finally 关键字的形式内建 ...

  4. springboot+kafka+邮件发送(最佳实践)

    导读 集成spring-kafka,生产者生产邮件message,消费者负责发送 引入线程池,多线程发送消息 多邮件服务器配置 定时任务生产消息:计划邮件发送 实现过程 导入依赖 <proper ...

  5. Kafka数据迁移MaxCompute最佳实践

    摘要: 本文向您详细介绍如何使用DataWorks数据同步功能,将Kafka集群上的数据迁移到阿里云MaxCompute大数据计算服务. 前提条件 搭建Kafka集群 进行数据迁移前,您需要保证自己的 ...

  6. XPages访问关系型数据库技术与最佳实践

    XPage 对于 Domino 开发人员的一大好处就是能够很方便和高效的访问关系型数据库.本文通过实例代码展现了在 XPage 中访问关系型数据库的具体步骤 , 同时讲解了一些在 XPage 中高效访 ...

  7. 使用Scala开发Apache Kafka的TOP 20大好用实践

    本文作者是一位软件工程师,他对20位开发人员和数据科学家使用Apache Kafka的方式进行了最大限度得深入研究,最终将生产实践环节需要注意的问题总结为本文所列的20条建议. Apache Kafk ...

  8. Apache Kafka: 优化部署的10个最佳实践

    原文作者:Ben Bromhead      译者:江玮 原文地址:https://www.infoq.com/articles/apache-kafka-best-practices-to-opti ...

  9. Apache Kafka教程

    1.卡夫卡教程 今天,我们正在使用Apache Kafka Tutorial开始我们的新旅程.在这个Kafka教程中,我们将看到什么是Kafka,Apache Kafka历史以及Kafka的原因.此外 ...

随机推荐

  1. nginx系列9:HTTP反向代理请求处理流程

    HTTP反向代理请求处理流程 如下图:

  2. [置顶]生鲜配送管理系统_升鲜宝V2.0 销售订单汇总_采购任务分配功能_操作说明

    做好生鲜供应链系统,要注意三个方面,1.分拣 2 采购  3 库存,市面上做的比较成熟的功能,还是分拣这一块(按客户分拣.按订单分拣.按商品分类分拣.按商品分拣.按线路分拣.客户自由组合分拣)[下篇文 ...

  3. Android项目实战(四十五):Zxing二维码切换横屏扫描

    Demo链接 默认是竖屏扫描,但是当我们在清单文件中配置横屏显示的时候: <activity android:name=".CaptureActivity" android: ...

  4. Android为TV端助力 Linux命令查看包名类名

    先运行apk 再输入logcat | grep START 查看当前启动apk的包名和类名 adb shell "pm list packages -f | grep com.yulong. ...

  5. Spring AOP 整理笔记

    一.AOP概念 AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术. 利用AOP可以对业务逻辑的各 ...

  6. iOS:我的学习路径

    1.复习C语言(半个月) <C Primer Plus>1-6章 2.学习Objective-C基础语法(一周) 黑马程序员视频 3.直接用Xcode开始APP的实战(半个月) 黑马程序员 ...

  7. 简单shellcode编写

    0x00 介绍 Shellcode 是指经过精心设计的一串指令,一旦注入正在运行的应用程序中即可运行,常用于栈和基于堆的溢出.术语Shellcode意思指的便是用于启动一个命令Shell的已编写好的可 ...

  8. LeetCode算法题-Longest Word in Dictionary(Java实现)

    这是悦乐书的第303次更新,第322篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第171题(顺位题号是720).给出表示英语词典的字符串单词数组,找到单词中长度最长的单 ...

  9. ztree搜索节点并展开

    web <div class="zTreeC"> <div class="searchL" lay-filter="searchL& ...

  10. 修改rpm中的文件重新打包

    1.安装rpmrebuild 和安装rpmbuild rpmrebuild下载链接:https://sourceforge.net/projects/rpmrebuild/files/rpmrebui ...