luogu4055 游戏 (二分图博弈)
考虑对非障碍的点黑白染色然后做二分图最大匹配,那么有结论,先手必胜当且仅当不是完美匹配,而且可以放的点是那些可以不匹配的点
从非匹配点开始走,后手只能走到匹配点,于是先手就可以走匹配边。由于不能走走过的点,所以现在又变成了一个非匹配点;这样下去直到后手无路可走,所以先手必胜
反观完美匹配的情况,先手放在任意一个匹配的位置,后手都可以走匹配边从而变成了上面的情况,就是后手必胜
这类问题大概可以总结为:(一类可以用二分图来描述的博弈问题)
1.博弈者人数为两人,双方轮流进行决策。
2.博弈状态(对应点)可分为两类(状态空间可分为两个集合),对应二分图两边(X集和Y集)。任意合法的决策(对应边)使状态从一类跳转到另一类。(正是由于这个性质使得问题可以用二分图描述)
3.不可以转移至已访问的状态。(不可重复访问点)
4.无法转移者判负。
#include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
#define MP make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int ui;
typedef long double ld;
const int maxn=,maxp=1e4+; inline char gc(){
return getchar();
static const int maxs=<<;static char buf[maxs],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,maxs,stdin),p1==p2)?EOF:*p1++;
}
inline ll rd(){
ll x=;char c=gc();bool neg=;
while(c<''||c>''){if(c=='-') neg=;c=gc();}
while(c>=''&&c<='') x=(x<<)+(x<<)+c-'',c=gc();
return neg?(~x+):x;
} int N,M,id[maxn][maxn],pct,cnt[];
char mp[maxn][maxn];
bool col[maxp],flag[maxp],ans[maxp];
int eg[maxp*][],egh[maxp],bel[maxp],ect; inline void adeg(int a,int b){
eg[++ect][]=b,eg[ect][]=egh[a],egh[a]=ect;
} bool dfs(int x){
for(int i=egh[x];i;i=eg[i][]){
int b=eg[i][];if(flag[b]) continue;
flag[b]=;
if(!bel[b]||dfs(bel[b])){
bel[b]=x,bel[x]=b;
return ;
}
}return ;
} int main(){
//freopen("","r",stdin);
N=rd(),M=rd();
for(int i=;i<=N;i++) scanf("%s",mp[i]+);
for(int i=;i<=N;i++){
for(int j=;j<=M;j++){
if(mp[i][j]=='.'){
id[i][j]=++pct;
cnt[col[pct]=(i&)^(j&)]++;
if(i>&&mp[i-][j]=='.')
adeg(id[i-][j],id[i][j]),adeg(id[i][j],id[i-][j]);
if(j>&&mp[i][j-]=='.')
adeg(id[i][j-],id[i][j]),adeg(id[i][j],id[i][j-]);
}
}
}
int nn=;
for(int i=;i<=pct;i++){
CLR(flag,);
if(col[i]) nn+=dfs(i);
}
if(nn==cnt[]&&nn==cnt[]) puts("LOSE");
else{
puts("WIN");
for(int i=;i<=pct;i++){
CLR(flag,);
flag[i]=;
if(!bel[i]||dfs(bel[i])) bel[i]=,ans[i]=;
}
for(int i=;i<=N;i++){
for(int j=;j<=M;j++){
if(ans[id[i][j]]) printf("%d %d\n",i,j);
}
}
}
return ;
}
luogu4055 游戏 (二分图博弈)的更多相关文章
- [NOI2011]兔兔与蛋蛋游戏 二分图博弈
题面 题面 题解 通过观察,我们可以发现如下性质: 可以看做是2个人在不断移动空格,只是2个人能移动的边不同 一个位置不会被重复经过 : 根据题目要求,因为是按黑白轮流走,所以不可能重复经过一个点,不 ...
- [JSOI2009]游戏 二分图博弈
题面 题面 题解 二分图博弈的模板题,只要会二分图博弈就可以做了,可以当做板子打. 根据二分图博弈,如果一个点x在某种方案中不属于最大匹配,那么这是一个先手必败点. 因为对方先手,因此我们就是要找这样 ...
- [luogu1971 NOI2011] 兔兔与蛋蛋游戏 (二分图博弈)
传送门 Solution 补一篇二分图博弈 这个博客写的很详细qwq: https://www.cnblogs.com/maijing/p/4703094.html Code //By Menteur ...
- BZOJ 1443 游戏(二分图博弈)
新知识get. 一类博弈问题,基于以下条件: 1.博弈者人数为两人,双方轮流进行决策.2.博弈状态(对应点)可分为两类(状态空间可分为两个集合),对应二分图两边(X集和Y集).任意合法的决策(对应边) ...
- BZOJ.2437.[NOI2011]兔兔与蛋蛋游戏(二分图博弈 匈牙利)
题目链接 首先空格的移动等价于棋子在黑白格交替移动(设起点移向白格就是黑色),且不会走到到起点距离为奇数的黑格.到起点距离为偶数的白格(删掉就行了),且不会重复走一个格子. (然后策略就同上题了,只不 ...
- [模板] 二分图博弈 && BZOJ2463:[中山市选2009]谁能赢呢?
二分图博弈 from BZOJ 1443 游戏(二分图博弈) - free-loop - 博客园 定义 1.博弈者人数为两人,双方轮流进行决策. 2.博弈状态(对应点)可分为两类(状态空间可分为两个集 ...
- [LOJ#6033]. 「雅礼集训 2017 Day2」棋盘游戏[二分图博弈、匈牙利算法]
题意 题目链接 分析 二分图博弈经典模型,首先将棋盘二分图染色. 考虑在某个最大匹配中: 如果存在完美匹配则先手必败,因为先手选定的任何一个起点都在完美匹配中,而后手则只需要走这个点的匹配点,然后先手 ...
- bzoj 1443 二分图博弈
这种两个人轮流走,不能走 走过的格子的大都是二分图博弈... #include<bits/stdc++.h> #define LL long long #define fi first # ...
- BZOJ 1443 二分图博弈 网络流
思路: 二分图博弈嘛 找到最大匹配的必须点 跑个网络流 前后DFS一遍 //By SiriusRen #include <queue> #include <cstdio> #i ...
随机推荐
- C# 绘制PDF嵌套表格
嵌套表格,即在一张表格中的特定单元格中再插入一个或者多个表格,使用嵌套表格的优点在于能够让内容的布局更加合理,同时也方便程序套用.下面的示例中,将介绍如何通过C#编程来演示如何插入嵌套表格到PDF文档 ...
- 折腾Java设计模式之迭代器模式
迭代器模式 Provide a way to access the elements of an aggregate object sequentially without exposing its ...
- java基础(一):谈谈java内存管理与垃圾回收机制
看了很多java内存管理的文章或者博客,写的要么笼统,要么划分的不正确,且很多文章都千篇一律.例如部分地方将jvm笼统的分为堆.栈.程序计数器,这么分太过于笼统,无法清晰的阐述java的内存管理模型: ...
- 简单的shell命令
grep echo 重定向与管道 tr 特殊文件:/dev/null,/dev/tty 基本命令查找 访问shell脚本的参数 简单的执行跟踪: set -x set +x
- ArcPy 创建图层空间索引
使用Python脚本进行图层的空间索引的创建. 附上Python代码: # -*- coding: utf-8 -*- # nightroad import sys import arcpy relo ...
- 无限极分类(adjacency list)的三种方式(迭代、递归、引用)
一般的分类树状结构有两种方式: 一种是adjacency list,也就是是id,parent id这中形式. 另一种是nested set,即左右值的形式. 左右值形式查询起来比较高效,无需递归等, ...
- spring笔记----看书笔记
上周末看了一章以前javaee轻量级的书spring部分,简单做了一些笔记 // ApplicationContext ac=new ClassPathXmlApplicationContext(&q ...
- C# Split的用法,Split分割字符串
C# Split的用法,Split分割字符串 分割单个字串:string str="来自张三的亲切问候!;string[] strarry=str.Split(new string[] { ...
- 海思uboot启动流程详细分析(三)【转】
1. 前言 书接上文(u-boot启动流程分析(二)_平台相关部分),本文介绍u-boot启动流程中和具体版型(board)有关的部分,也即board_init_f/board_init_r所代表的. ...
- 强化学习(五)—— 策略梯度及reinforce算法
1 概述 在该系列上一篇中介绍的基于价值的深度强化学习方法有它自身的缺点,主要有以下三点: 1)基于价值的强化学习无法很好的处理连续空间的动作问题,或者时高维度的离散动作空间,因为通过价值更新策略时是 ...