3675: [Apio2014]序列分割

Time Limit: 40 Sec  Memory Limit: 128 MB
Submit: 3508  Solved: 1402
[Submit][Status][Discuss]

Description

小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:
1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);
2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。
 
每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。
 

Input

输入第一行包含两个整数n,k(k+1≤n)。

第二行包含n个非负整数a1,a2,...,an(0≤ai≤10^4),表示一开始小H得到的序列。

Output

输出第一行包含一个整数,为小H可以得到的最大分数。

Sample Input

7 3
4 1 3 4 0 2 3

Sample Output

108

HINT

【样例说明】

在样例中,小H可以通过如下3轮操作得到108分:

1.-开始小H有一个序列(4,1,3,4,0,2,3)。小H选择在第1个数之后的位置

将序列分成两部分,并得到4×(1+3+4+0+2+3)=52分。

2.这一轮开始时小H有两个序列:(4),(1,3,4,0,2,3)。小H选择在第3个数

字之后的位置将第二个序列分成两部分,并得到(1+3)×(4+0+2+

3)=36分。

3.这一轮开始时小H有三个序列:(4),(1,3),(4,0,2,3)。小H选择在第5个

数字之后的位置将第三个序列分成两部分,并得到(4+0)×(2+3)=

20分。

经过上述三轮操作,小H将会得到四个子序列:(4),(1,3),(4,0),(2,3)并总共得到52+36+20=108分。

【数据规模与评分】

:数据满足2≤n≤100000,1≤k≤min(n -1,200)。

Source

刚拿到题:一脸懵逼
仔细一看 这个切割顺序好像不影响答案吧?你分出的任意两块都会相乘一次贡献答案
于是dp就很好写了。。
sum[]前缀和
f[i]=f[j]+sum[j]*(sum[i]-sum[j])
斜率优化至每次O(1)转移

 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cmath>
#include<vector>
#include<cstdlib>
#include<iostream>
#define ll long long
#define inf 2147483647
#define N 100005
using namespace std;
ll dp[][N],sum[N];
int q[N],K,c;
double slope(int j,int k){
return (double)(dp[c^][k]-dp[c^][j]+sum[j]*sum[j]-sum[k]*sum[k])/double(sum[j]-sum[k]);
} int main(){
int n,cnt=;;
scanf("%d%d",&n,&K);
for(int i=;i<=n;i++){
int x;scanf("%d",&x);
if(x!=)sum[++cnt]=sum[cnt-]+x;
}
int h,t;n=cnt;
for(int j=;j<=K;j++){
q[]=j-;h=;t=;c^=;
for(int i=j;i<=n;i++){
while(h+<t&&slope(q[h],q[h+])<=sum[i])h++;
int p=q[h];
dp[c][i]=dp[c^][p]+sum[p]*(sum[i]-sum[p]);
while(h+<t&&slope(i,q[t-])<=slope(q[t-],q[t-]))t--;
q[t++]=i;
}
}
printf("%lld",dp[c][n]);
return ;
}

bzoj3675[Apio2014]序列分割 斜率优化dp的更多相关文章

  1. 【bzoj3675】[Apio2014]序列分割 斜率优化dp

    原文地址:http://www.cnblogs.com/GXZlegend/p/6835179.html 题目描述 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列 ...

  2. [APIO2014]序列分割 --- 斜率优化DP

    [APIO2014]序列分割 题目大意: 你正在玩一个关于长度为\(n\)的非负整数序列的游戏.这个游戏中你需要把序列分成\(k+1\)个非空的块.为了得到\(k+1\)块,你需要重复下面的操作\(k ...

  3. BZOJ3675: [Apio2014]序列分割(斜率优化)

    Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 4186  Solved: 1629[Submit][Status][Discuss] Descript ...

  4. BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)

    洛谷传送门 题目大意:让你把序列切割k次,每次切割你能获得 这一整块两侧数字和的乘积 的分数,求最大的分数并输出切割方案 神题= = 搞了半天也没有想到切割顺序竟然和答案无关...我太弱了 证明很简单 ...

  5. BZOJ 3675 APIO2014 序列切割 斜率优化DP

    题意:链接 方法:斜率优化DP 解析:这题BZ的数据我也是跪了,特意去网上找到当年的数据后面二十个最大的点都过了.就是过不了BZ. 看到这道题自己第一发DP是这么推得: 设f[i][j]是第j次分第i ...

  6. P3648 [APIO2014]序列分割 斜率优化

    题解:斜率优化\(DP\) 提交:\(2\)次(特意没开\(long\ long\),然后就死了) 题解: 好的先把自己的式子推了出来: 朴素: 定义\(f[i][j]\)表示前\(i\)个数进行\( ...

  7. 【BZOJ3675】【APIO2014】序列分割 [斜率优化DP]

    序列分割 Time Limit: 40 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 小H最近迷上了一个分隔序列的游戏. ...

  8. BZOJ 3675: 序列分割 (斜率优化dp)

    Description 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得到k+1个子序列,小H需要重复k次以下的步骤: 1.小H首 ...

  9. 2018.09.29 bzoj3675: [Apio2014]序列分割(斜率优化dp)

    传送门 斜率优化dp经典题目. 首先需要证明只要选择的K个断点是相同的,那么得到的答案也是相同的. 根据分治的思想,我们只需要证明有两个断点时成立,就能推出K个断点时成立. 我们设两个断点分成的三段连 ...

随机推荐

  1. initializer element is not a compile-time constant

    初始化一个全局变量或static变量时,只能用常量赋值,不能用变量赋值! 如下就会报这个错误(KUIScreenWidth)是变量 static CGFloat const topButtonWidt ...

  2. Python设计TFTP客户端

    #coding=utf-8 from socket import * from threading import Thread import struct def recvData(fileName, ...

  3. 详解k8s一个完整的监控方案(Heapster+Grafana+InfluxDB) - kubernetes

    1.浅析整个监控流程 heapster以k8s内置的cAdvisor作为数据源收集集群信息,并汇总出有价值的性能数据(Metrics):cpu.内存.网络流量等,然后将这些数据输出到外部存储,如Inf ...

  4. windbg查找Kernel32.dll基址

    一.首先准备好一个程序,运行起来,用windbg进行附加调试,由于每个windows下的程序都会加载kernel32.dll,因此,找基址的过程是一样的:  二.查看PEB地址: 法一.r $peb ...

  5. Docker学习笔记 - Docker的容器

    docker logs  [-f]  [-t]  [--tail]  容器名 -f -t --tail="all" 无参数:返回所有日志 -f 一直跟踪变化并返回 -t 带时间戳返 ...

  6. jQuery serialize()方法获取不到数据,alert结果为空

    网上查找,问题可能是 id有重复 经排查,没有发现重复id 解决方案 form表单中每个input框都没有name属性,添加name属性即可 若name属性与jQuery的关键字有冲突,也可导致该问题 ...

  7. JavaScript中Global、Math、Date对象的常用方法

    JavaScript当中Global.Math.Date类型常用方法如下: /* js 中 Global对象 是一个不存在的对象,它里面的方法可以调用 常用方法: 1 encodeURI 对uri进行 ...

  8. virtualbox中linux系统与windows实现共享文件夹

    最近有一次,需要在linux获取在我windows系统里的安装包,但是呢不论如何也拿不过去. virtualbox虽然提供了双向拖放,但是实在是太不健壮了,感觉基本就没好使过. 于是我想到了用共享文件 ...

  9. ActiveMQ学习系列(二)----生产者客户端(java)

    上文主要简单地将activeMq搭建了起来,并且可以用web console去登录查看相关的后台功能. 本文将学习如何用java语言实现一个生产者客户端,主要参考了以下链接: http://activ ...

  10. springCloud 微服务框架搭建入门(很简单的一个案例不喜勿扰)

    Spring cloud 实现服务注册及发现 服务注册与发现对于微服务系统来说非常重要.有了服务发现与注册,你就不需要整天改服务调用的配置文件了,你只需要使用服务的标识符,就可以访问到服务. clou ...