Jetson TX2上的demo(原创)
Jetson TX2上的demo
一、快速傅里叶-海动图 sample
The CUDA samples directory is copied to the home directory on the device by JetPack. The built binaries are in the following directory:
/home/ubuntu/NVIDIA_CUDA-<version>_Samples/bin/armv7l/linux/release/gnueabihf/
这里的version需要看你自己安装的CUDA版本而定
Run the samples at the command line or by double-clicking on them in the file browser. For example, when you run the oceanFFT sample, the following screen is displayed.
二、车辆识别加框sample
nvidia@tegra-ubuntu:~/tegra_multimedia_api/samples/backend$
./backend 1 ../../data/Video/sample_outdoor_car_1080p_10fps.h264 H264
--trt-deployfile ../../data/Model/GoogleNet_one_class/GoogleNet_modified_oneClass_halfHD.prototxt
--trt-modelfile ../../data/Model/GoogleNet_one_class/GoogleNet_modified_oneClass_halfHD.caffemodel --trt-forcefp32 0 --trt-proc-interval 1 -fps 10
三、GEMM(通用矩阵乘法)测试
nvidia@tegra-ubuntu:/usr/local/cuda/samples/7_CUDALibraries/batchCUBLAS$ ./batchCUBLAS -m1024 -n1024 -k1024
batchCUBLAS Starting...
GPU Device 0: "NVIDIA Tegra X2" with compute capability 6.2
==== Running single kernels ====
Testing sgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024 alpha = (0xbf800000, -1) beta= (0x40000000, 2)#### args: lda=1024 ldb=1024 ldc=1024
^^^^ elapsed = 0.00372291 sec GFLOPS=576.83@@@@ sgemm test OK
Testing dgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024 alpha = (0x0000000000000000, 0) beta= (0x0000000000000000, 0)#### args: lda=1024 ldb=1024 ldc=1024
^^^^ elapsed = 0.10940003 sec GFLOPS=19.6296@@@@ dgemm test OK
==== Running N=10 without streams ====
Testing sgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024 alpha = (0xbf800000, -1) beta= (0x00000000, 0)#### args: lda=1024 ldb=1024 ldc=1024
^^^^ elapsed = 0.03462315 sec GFLOPS=620.245@@@@ sgemm test OK
Testing dgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024 alpha = (0xbff0000000000000, -1) beta= (0x0000000000000000, 0)#### args: lda=1024 ldb=1024 ldc=1024
^^^^ elapsed = 1.09212208 sec GFLOPS=19.6634@@@@ dgemm test OK
==== Running N=10 with streams ====
Testing sgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024 alpha = (0x40000000, 2) beta= (0x40000000, 2)#### args: lda=1024 ldb=1024 ldc=1024
^^^^ elapsed = 0.03504515 sec GFLOPS=612.776@@@@ sgemm test OK
Testing dgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024 alpha = (0xbff0000000000000, -1) beta= (0x0000000000000000, 0)#### args: lda=1024 ldb=1024 ldc=1024
^^^^ elapsed = 1.09177494 sec GFLOPS=19.6697@@@@ dgemm test OK
==== Running N=10 batched ====
Testing sgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024 alpha = (0x3f800000, 1) beta= (0xbf800000, -1)#### args: lda=1024 ldb=1024 ldc=1024
^^^^ elapsed = 0.03766394 sec GFLOPS=570.17@@@@ sgemm test OK
Testing dgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024 alpha = (0xbff0000000000000, -1) beta= (0x4000000000000000, 2)#### args: lda=1024 ldb=1024 ldc=1024
^^^^ elapsed = 1.09389901 sec GFLOPS=19.6315@@@@ dgemm test OK
Test Summary0 error(s)
四、内存带宽测试
nvidia@tegra-ubuntu:/usr/local/cuda/samples/1_Utilities/bandwidthTest$ ./bandwidthTest
[CUDA Bandwidth Test] - Starting...
Running on...
Device 0: NVIDIA Tegra X2
Quick Mode
Host to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 20215.8
Device to Host Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 20182.2
Device to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 35742.8
Result = PASS
NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.
五、设备查询
nvidia@tegra-ubuntu:~/work/TensorRT/tmp/usr/src/tensorrt$ cd /usr/local/cuda/samples/1_Utilities/deviceQuery
nvidia@tegra-ubuntu:/usr/local/cuda/samples/1_Utilities/deviceQuery$ ls
deviceQuery deviceQuery.cpp deviceQuery.o Makefile NsightEclipse.xml readme.txt
nvidia@tegra-ubuntu:/usr/local/cuda/samples/1_Utilities/deviceQuery$ ./deviceQuery
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "NVIDIA Tegra X2"
CUDA Driver Version / Runtime Version 8.0 / 8.0
CUDA Capability Major/Minor version number: 6.2
Total amount of global memory: 7851 MBytes (8232062976 bytes)
( 2) Multiprocessors, (128) CUDA Cores/MP: 256 CUDA Cores
GPU Max Clock rate: 1301 MHz (1.30 GHz)
Memory Clock rate: 1600 Mhz
Memory Bus Width: 128-bit
L2 Cache Size: 524288 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 32768
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 1 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: Yes
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 0 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = NVIDIA Tegra X2Result = PASS
六、大型项目的测试
详情查看https://developer.nvidia.com/embedded/jetpack
这里面还有一些项目
Jetson TX2上的demo(原创)的更多相关文章
- 在Jetson TX2上显示摄像头视频并使用python进行caffe推理
参考文章:How to Capture Camera Video and Do Caffe Inferencing with Python on Jetson TX2 与参考文章大部分都是相似的,如果 ...
- 在Jetson TX2上捕获、显示摄像头视频
参考文章:How to Capture and Display Camera Video with Python on Jetson TX2 与参考文章大部分都是相似的,如果不习惯看英文,可以看看我下 ...
- 在Jetson TX2上安装caffe和PyCaffe
caffe是Nvidia TensorRT最支持的深度学习框架,因此在Jetson TX2上安装caffe很有必要.顺便说一句,下面的安装是支持python3的. 先决条件 在Jetson TX2上完 ...
- 在Jetson TX2上安装OpenCV(3.4.0)
参考文章:How to Install OpenCV (3.4.0) on Jetson TX2 与参考文章大部分都是相似的,如果不习惯看英文,可以看看我下面的描述 在我们使用python3进行编程时 ...
- Jetson TX2安装tensorflow(原创)
Jetson TX2安装tensorflow 大致分为两步: 一.划分虚拟内存 原因:Jetson TX2自带8G内存这个内存空间在安装tensorflow编译过程中会出现内存溢出引发的安装进程奔溃 ...
- Jetson TX2 安装JetPack3.3教程
Jetson TX2 刷机教程(JetPack3.3版本) 参考网站:https://blog.csdn.net/long19960208/article/details/81538997 版权声明: ...
- 02-NVIDIA Jetson TX2 通过JetPack 3.1刷机完整版(踩坑版)
未经允许,不得擅自改动和转载 文 | 阿小庆 2018-1-20 本文继第一篇文章:01-NVIDIA Jetson TX2开箱上电显示界面 TX2 出厂时,已经自带了 Ubuntu 16.04 系统 ...
- Jetson TX2火力全开
Jetson Tegra系统的应用涵盖越来越广,相应用户对性能和功耗的要求也呈现多样化.为此NVIDIA提供一种新的命令行工具,可以方便地让用户配置CPU状态,以最大限度地提高不同场景下的性能和能耗. ...
- 在TX2上多线程读取视频帧进行caffe推理
参考文章:Multi-threaded Camera Caffe Inferencing TX2之多线程读取视频及深度学习推理 背景 一般在TX2上部署深度学习模型时,都是读取摄像头视频或者传入视频文 ...
随机推荐
- python入门之函数
为什么要用函数 python的函数是由一个新的语句编写,即def ,def是可执行的语句--函数并不存在,知道python运行了def后才存在. 函数是通过赋值函数传递的,参数通过赋值传递给函数. d ...
- hibernate使用注解配置索引
添加普通索引 @Table(name="t_token", indexes={@Index(name="token_strIndex", columnList= ...
- Android 服务_笔记
Service服务 服务(Service)是Android中的四大组件之一,适用于开发无界面.长时间运行的应用功能,服务是在后台运行,服务的创建与Activity类似,只需要继承Service和在An ...
- 13、ABPZero系列教程之拼多多卖家工具 微信公众号开发前的准备
因为是开发阶段,我需要在本地调试,而微信开发需要配置域名,这样natapp.cn就有了用武之地,应该说natapp就是为此而生的. natapp.cn是什么 这是一个内网映射的网站,支持微信公众号.小 ...
- .net整理
CLR via C# 1 关于CLI,CTS,CLS,CIL,.Net Framework,CLR,FCL图 CLI:Common Language Infrastructure,是公共语言架构: C ...
- OOAD-设计模式(一)概述
前言 在我们很多时候设计代码都是需要用到各种不一样的设计模式的,接下来着几篇给大家领略一下设计模式.知道设计模式的作用,以及在代码的具体体现.很多时候我们看不懂代码就是因为我们不知道它使用的设计模式. ...
- Codechef:Path Triples On Tree
Path Triples On Tree 题意是求树上都不相交或者都相交的路径三元组数量. 发现blog里没什么树形dp题,也没有cc题,所以来丢一道cc上的树形dp题. 比较暴力,比较恶心 #inc ...
- UVALive3882-And Then There Was One-约瑟夫问题-递推
And Then There Was One Time limit: 3.000 seconds Let's play a stone removing game. Initially, n ston ...
- 最短路(spfa)
http://acm.hdu.edu.cn/showproblem.php?pid=2544 最短路 Time Limit: 5000/1000 MS (Java/Others) Memory ...
- c++(合并排序)
前面一篇博客提到的快速排序是排序算法中的一种经典算法.和快速排序一样,合并排序是另外一种经常使用的排序算法.那么合并排序算法有什么不同呢?关键之处就体现在这个合并上面. 合并算法的基本步骤如下所 ...