loj#6041. 「雅礼集训 2017 Day7」事情的相似度(SAM set启发式合并 二维数点)
题意
Sol
只会后缀数组+暴躁莫队套set\(n \sqrt{n} \log n\)但绝对跑不过去。
正解是SAM + set启发式合并 + 二维数点/ SAM + LCT
但是我只会第一种qwq
首先一个性质是两个前缀的最长公共后缀就是他们再parent树上的LCA的len
那么我们考虑每个LCA的贡献。
把询问离线下来按右端点排序,对于当前点的子树中的点有一个显然的性质。
若存在四个点\(l, x, y, r\)满足\(l < x < y < r\),那么显然\(l, r\)这对点是没有意义的(因为每对点产生的贡献都相同)。也就说我们在处理子树的时候实际上有一堆点对用不到。我们可以通过set启发式合并来合并子树,也就是说我现在有一堆点集,然后我考虑加入一个新点之后哪些点对会有用,显然只有它与它的前驱/后继这两个点对是有用的。
因为合并的时候是启发式合并,所以总复杂度不会超过\(n \log^2 n\)
然后处理完之后就是一个二维数点取max问题了。
调起来有点自闭qwq
#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define pb push_back
//#define int long long
#define LL long long
#define ull unsigned long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 1e6 + 10, mod = 1e9 + 7, INF = 1e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x * x;}
template <typename A, typename B> inline LL fp(A a, B p, int md = mod) {int b = 1;while(p) {if(p & 1) b = mul(b, a);a = mul(a, a); p >>= 1;}return b;}
template <typename A> A inv(A x) {return fp(x, mod - 2);}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, ans[MAXN];
char s[MAXN];
vector<Pair> Q[MAXN], P[MAXN];
vector<int> v[MAXN];
set<int> st[MAXN];
int ch[MAXN][2], len[MAXN], fa[MAXN], las = 1, root = 1, tot = 1;
void insert(int x, int id) {
int now = ++tot, pre = las; las = now; len[now] = len[pre] + 1;
st[now].insert(id);
for(; pre && !ch[pre][x]; pre = fa[pre]) ch[pre][x] = now;
if(!pre) fa[now] = root;
else {
int q = ch[pre][x];
if(len[q] == len[pre] + 1) fa[now] = q;
else {
int nq = ++tot;
fa[nq] = fa[q]; len[nq] = len[pre] + 1;
memcpy(ch[nq], ch[q], sizeof(ch[q]));
for(; pre && ch[pre][x] == q; pre = fa[pre]) ch[pre][x] = nq;
fa[now] = fa[q] = nq;
}
}
}
void dfs(int x) {
set<int> &S = st[x];
for(auto &to : v[x]) {
dfs(to);
set<int> &Sto = st[to];
if(Sto.size() > S.size()) swap(Sto, S);
for(auto &nxt: Sto) {
auto pos = S.insert(nxt).fi;
if(pos != S.begin()) {
auto pre = --pos; pos++;
// printf("%d %d %d\n", *pos, *pre, len[x]);
P[*pos].pb({*pre, len[x]});
}
if((++pos) != S.end()) {
pos--;
auto nxt = ++pos; pos--;
//printf("%d %d\n", *pos, *nxt);
P[*nxt].pb({*pos, len[x]});
}
S.erase(nxt);
}
for(auto &nxt: Sto) S.insert(nxt);
}
}
void Build() {
for(int i = 1; i <= tot; i++) v[fa[i]].push_back(i);
dfs(1);
for(int i = 1; i <= N; i++) sort(Q[i].begin(), Q[i].end()), sort(P[i].begin(), P[i].end());
}
int mx[MAXN];
#define lb(x) (x & (-x))
void Add(int x, int val) {
x = N - x + 1;
while(x <= N) chmax(mx[x], val), x += lb(x);
}
int Query(int x) {
x = N - x + 1;
int ans = 0;
while(x) chmax(ans, mx[x]), x -= lb(x);
return ans;
}
void solve() {
for(int i = 1; i <= N; i++) {
int cur = Q[i].size() - 1;
for(int j = P[i].size() - 1; j >= 0; j--) {
while((~cur) && Q[i][cur].fi > P[i][j].fi) ans[Q[i][cur].se] = Query(Q[i][cur].fi), cur--;
Add(P[i][j].fi, P[i][j].se);
}
while(~cur)
ans[Q[i][cur].se] = Query(Q[i][cur].fi), cur--;
}
}
signed main() {
//freopen("a.in", "r", stdin);
N = read(); M = read();
scanf("%s", s + 1);
for(int i = 1; i <= N; i++) insert(s[i] - '0', i);
for(int i = 1; i <= M; i++) {
int l = read(), r = read();
Q[r].pb({l, i});
}
Build();
solve();
for(int i = 1; i <= M; i++) cout << ans[i] << '\n';
return 0;
}
loj#6041. 「雅礼集训 2017 Day7」事情的相似度(SAM set启发式合并 二维数点)的更多相关文章
- 【刷题】LOJ 6041 「雅礼集训 2017 Day7」事情的相似度
题目描述 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的有相同的事情发 ...
- LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度
我可以大喊一声这就是个套路题吗? 首先看到LCP问题,那么套路的想到SAM(SA的做法也有) LCP的长度是它们在parent树上的LCA(众所周知),所以我们考虑同时统计多个点之间的LCA对 树上问 ...
- loj#6041. 「雅礼集训 2017 Day7」事情的相似度(后缀自动机+启发式合并)
题面 传送门 题解 为什么成天有人想搞些大新闻 这里写的是\(yyb\)巨巨说的启发式合并的做法(虽然\(LCT\)的做法不知道比它快到哪里去了--) 建出\(SAM\),那么两个前缀的最长公共后缀就 ...
- LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度 LCT+SAM+线段树
Code: #include<bits/stdc++.h> #define maxn 200003 using namespace std; void setIO(string s) { ...
- #6041. 「雅礼集训 2017 Day7」事情的相似度 [set启发式合并+树状数组扫描线]
SAM 两个前缀的最长后缀等价于两个点的 \(len_{lca}\) , 题目转化为求 \(l \leq x , y \leq r\) , \(max\{len_{lca(x,y)}\}\) // p ...
- 「雅礼集训 2017 Day7」事情的相似度
「雅礼集训 2017 Day7」事情的相似度 题目链接 我们先将字符串建后缀自动机.然后对于两个前缀\([1,i]\),\([1,j]\),他们的最长公共后缀长度就是他们在\(fail\)树上对应节点 ...
- 【LOJ 6041】「雅礼集训 2017 Day7」事情的相似度
Description 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的 ...
- LOJ6041. 「雅礼集训 2017 Day7」事情的相似度 [后缀树,LCT]
LOJ 思路 建出反串的后缀树,发现询问就是问一个区间的点的\(lca\)的深度最大值. 一种做法是dfs的时候从下往上合并\(endpos\)集合,发现插入一个点的时候只需要把与前驱后继的贡献算进去 ...
- 【loj6041】「雅礼集训 2017 Day7」事情的相似度 后缀自动机+STL-set+启发式合并+离线+扫描线+树状数组
题目描述 给你一个长度为 $n$ 的01串,$m$ 次询问,每次询问给出 $l$ .$r$ ,求从 $[l,r]$ 中选出两个不同的前缀的最长公共后缀长度的最大值. $n,m\le 10^5$ 题解 ...
随机推荐
- 支持向量机(Support Vector Machine,SVM)—— 线性SVM
支持向量机(Support Vector Machine,简称 SVM)于 1995 年正式发表,由于其在文本分类任务中的卓越性能,很快就成为机器学习的主流技术.尽管现在 Deep Learnin ...
- 使用NSSM把.Net Core部署至 Windows 服务
为什么部署至Windows Services 在很多情况下,很少会把.Net Core项目部署至Windows服务中,特别是Asp.net Core就更少了.一般情况下,Asp.net Core会部署 ...
- Python进阶:全面解读高级特性之切片!
导读:切片系列文章连续写了三篇,本文是对它们做的汇总.为什么要把序列文章合并呢?在此说明一下,本文绝不是简单地将它们做了合并,主要是修正了一些严重的错误(如自定义序列切片的部分),还对行文结构与章节衔 ...
- 【我们一起写框架】领域驱动设计的CodeFirst框架(一)—序篇
前言 领域驱动设计,其实已经是一个很古老的概念了,但它的复杂度依旧让学习的人头疼不已. 互联网关于领域驱动的文章有很多,每一篇写的都很好,理解领域驱动设计的人都看的懂. 不过,这些文章对于那些初学者而 ...
- HTML 练习on方法
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Cmake 学习笔记
编写CMakeLists.txt #在当前目录新建一个build目录,然后cd build:cmake .. #这样的好处是,可以将cmake生成的内容,和源码文件分离 #设置编译结果发布路径 ...
- winfrom SVG转Imge
svg矢量图的使用,将svg矢量图展示在pictureBox上,拖动可以应用到其他设计软件上,复杂一点,中间涉及到SVG的下载 以及 SVG转化为 图片等操作 效果图如下: 源码下载地址: htt ...
- 【BZOJ5505】[GXOI/GZOI2019]逼死强迫症(矩阵快速幂)
[BZOJ5505][GXOI/GZOI2019]逼死强迫症(矩阵快速幂) 题面 BZOJ 洛谷 题解 如果没有那两个\(1*1\)的东西,答案就是斐波那契数,可以简单的用\(dp\)得到. 大概是设 ...
- [AI开发]将深度学习技术应用到实际项目
本文介绍如何将基于深度学习的目标检测算法应用到具体的项目开发中,体现深度学习技术在实际生产中的价值,算是AI算法的一个落地实现.本文算法部分可以参见前面几篇博客: [AI开发]Python+Tenso ...
- 如何让 Editplus 支持 SQL 语法高亮
editplus 用来编辑或查看一些常用程序源码都很方便,而且软件小巧,但是他原生不能支持对 SQL 文件的高亮显示,有点遗憾,但好在我们可以自定义这种高亮显示,那么要如何设置呢 1. 首先点击下载文 ...