Problem  Codeforces #550 (Div3) - G.Two Merged Sequences

Time Limit: 2000 mSec

Problem Description

Two integer sequences existed initially, one of them was strictly increasing, and another one — strictly decreasing.

Strictly increasing sequence is a sequence of integers [x1<x2<⋯<xk][x1<x2<⋯<xk] . And strictly decreasing sequence is a sequence of integers [y1>y2>⋯>yl][y1>y2>⋯>yl] . Note that the empty sequence and the sequence consisting of one element can be considered as increasing or decreasing.

Elements of increasing sequence were inserted between elements of the decreasing one (and, possibly, before its first element and after its last element) without changing the order. For example, sequences [1,3,4][1,3,4] and [10,4,2][10,4,2] can produce the following resulting sequences: [10,1,3,4,2,4][10,1,3,4,2,4] , [1,3,4,10,4,2][1,3,4,10,4,2] . The following sequence cannot be the result of these insertions: [1,10,4,4,3,2][1,10,4,4,3,2] because the order of elements in the increasing sequence was changed.

Let the obtained sequence be aa . This sequence aa is given in the input. Your task is to find any two suitable initial sequences. One of them should be strictly increasing, and another one — strictly decreasing. Note that the empty sequence and the sequence consisting of one element can be considered as increasing or decreasing.

If there is a contradiction in the input and it is impossible to split the given sequence aa into one increasing sequence and one decreasing sequence, print "NO".

Input

The first line of the input contains one integer nn (1≤n≤2⋅1051≤n≤2⋅105) — the number of elements in aa.

The second line of the input contains nn integers a1,a2,…,ana1,a2,…,an (0≤ai≤2⋅1050≤ai≤2⋅105), where aiai is the ii-th element of a.

Output

If there is a contradiction in the input and it is impossible to split the given sequence aa into one increasing sequence and one decreasing sequence, print "NO" in the first line.

Otherwise print "YES" in the first line. In the second line, print a sequence of nn integers res1,res2,…,resnres1,res2,…,resn, where resiresi should be either 00 or 11 for each ii from 11 to nn. The ii-th element of this sequence should be 00 if the ii-th element of aa belongs to the increasing sequence, and 11 otherwise. Note that the empty sequence and the sequence consisting of one element can be considered as increasing or decreasing.

Sample Input

9
5 1 3 6 8 2 9 0 10

Sample Output

YES
1 0 0 0 0 1 0 1 0

题解:两种做法,先说贪心,维护下降序列当前最小值M和上升序列当前最大值m

  1、a[i] > M && a[i] < m,自然无解。

  2、a[i] < M && a[i] < m,只能加到下降序列。

  3、a[i] > M && a[i] > m,只能加到上升序列。

  4、a[i] < M && a[i] > m,此时需要考虑a[i+1]与a[i]的大小关系,不妨假设a[i+1] > a[i],那么此时应将a[i]加入上升序列,原因很简单,如果把a[i]加入下降序列,则a[i+1]只能加入上升序列,显然这种方案不如把a[i]与a[i+1]都加入上升序列(下降的没动,上升的变化相同),另一种情况同理。

  以上四点给出贪心算法并说明贪心成立。

  第二种动态规划,分段决策类的动态规划,无非就是考虑第i个数加到上升还是下降,所以很容易想到二维dp,第一维表处理到第i个数,第二维表加入哪个序列,难想的地方在于要优化什么东西,这里的状态定义就很值得学习了:

  dp(i, 0)表示处理完前i个数,将i加入递增序列后递减序列元素中最后一个元素的最大值。

  dp(i, 1)表示处理完前i个数,将i加入递减序列后递增序列元素中最后一个元素的最小值。

我们肯定是希望前者越大越好,后者越小越好,这样给后面的数字提供更大的选择空间,其实这样定义状态看似有点绕,其实很合理,因为把i加入递增序列后,递增序列的最小值就有了,所以只需要再维护一下递减的最大值即可,加入递减序列同理。再说状态转移的问题,一般动态规划都是难在状态,此题也不例外,转移不难,就是枚举a[i]和a[i-1]分别放在哪种序列中即可,转移时要记录路径,方便最后输出。

  贪心代码没啥说的就不贴了,只给出dp代码。

 #include <bits/stdc++.h>

 using namespace std;

 #define REP(i, n) for (int i = 1; i <= (n); i++)
#define sqr(x) ((x) * (x)) const int maxn = + ;
const int maxm = + ;
const int maxs = + ; typedef long long LL;
typedef pair<int, int> pii;
typedef pair<double, double> pdd; const LL unit = 1LL;
const int INF = 0x3f3f3f3f;
const LL mod = ;
const double eps = 1e-;
const double inf = 1e15;
const double pi = acos(-1.0); int n;
int a[maxn], dp[maxn][];
int path[maxn][];
int ans[maxn]; int main()
{
ios::sync_with_stdio(false);
cin.tie();
//freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
cin >> n;
for (int i = ; i <= n; i++)
{
cin >> a[i];
}
dp[][] = INF, dp[][] = -INF;
for (int i = ; i <= n; i++)
{
dp[i][] = -INF, dp[i][] = INF;
if (a[i - ] < a[i] && dp[i][] < dp[i - ][])
{
dp[i][] = dp[i - ][];
path[i][] = ;
}
if (dp[i - ][] > a[i] && dp[i][] > a[i - ])
{
dp[i][] = a[i - ];
path[i][] = ;
}
if (a[i] > dp[i - ][] && dp[i][] < a[i - ])
{
dp[i][] = a[i - ];
path[i][] = ;
}
if (a[i] < a[i - ] && dp[i][] > dp[i - ][])
{
dp[i][] = dp[i - ][];
path[i][] = ;
}
}
if(dp[n][] > -INF)
{
cout << "YES" << endl;
int opt = ;
for(int i = n; i >= ; i--)
{
ans[i] = opt;
opt = path[i][opt];
}
for(int i = ; i <= n; i++)
{
cout << ans[i] << " ";
}
}
else if(dp[n][] < INF)
{
cout << "YES" << endl;
int opt = ;
for(int i = n; i >= ; i--)
{
ans[i] = opt;
opt = path[i][opt];
}
for(int i = ; i <= n; i++)
{
cout << ans[i] << " ";
}
}
else
{
cout << "NO";
}
return ;
}

Codeforces #550 (Div3) - G.Two Merged Sequences(dp / 贪心)的更多相关文章

  1. Codeforces 1144G Two Merged Sequences dp

    Two Merged Sequences 感觉是个垃圾题啊, 为什么过的人这么少.. dp[ i ][ 0 ]表示处理完前 i 个, 第 i 个是递增序列序列里的元素,递减序列的最大值. dp[ i ...

  2. Codeforces 429C Guess the Tree(状压DP+贪心)

    吐槽:这道题真心坑...做了一整天,我太蒻了... 题意 构造一棵 $ n $ 个节点的树,要求满足以下条件: 每个非叶子节点至少包含2个儿子: 以节点 $ i $ 为根的子树中必须包含 $ c_i ...

  3. Codeforces Round #276 (Div. 1)D.Kindergarten DP贪心

    D. Kindergarten     In a kindergarten, the children are being divided into groups. The teacher put t ...

  4. [CodeForces - 1272D] Remove One Element 【线性dp】

    [CodeForces - 1272D] Remove One Element [线性dp] 标签:题解 codeforces题解 dp 线性dp 题目描述 Time limit 2000 ms Me ...

  5. codeforces #579(div3)

    codeforces #579(div3) A. Circle of Students 题意: 给定一个n个学生的编号,学生编号1~n,如果他们能够在不改变顺序的情况下按编号(无论是正序还是逆序,但不 ...

  6. Codeforces 219D. Choosing Capital for Treeland (树dp)

    题目链接:http://codeforces.com/contest/219/problem/D 树dp //#pragma comment(linker, "/STACK:10240000 ...

  7. (第二场)D Money 【dp\贪心】

    题目:https://www.nowcoder.com/acm/contest/140/D 题目描述: White Cloud has built n stores numbered from 1 t ...

  8. 【bzoj4027】[HEOI2015]兔子与樱花 树形dp+贪心

    题目描述 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它 ...

  9. BZOJ 2021 [Usaco2010 Jan]Cheese Towers:dp + 贪心

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2021 题意: John要建一个奶酪塔,高度最大为m. 他有n种奶酪.第i种高度为h[i]( ...

随机推荐

  1. Win7系统修改hosts无法保存怎么办?

    背景 有的时候我们需要修改hosts文件,但是在某些情况下竟提示保存不了.之前有一次IntelliJ IDEA提示我快到期了,于是我到网上找到了一个激活方法,但需要将一个地址放到hosts文件中去,此 ...

  2. Cocos Creator—优化首页打开速度

    Cocos Creator是一个优秀的游戏引擎开发工具,很多地方都针对H5游戏做了专门的优化,这是我比较喜欢Cocos Creator的一点原因. 其中一个优化点是首页的加载速度,开发组为了加快首页的 ...

  3. Redux进阶(一)

    State的不可变化带来的麻烦 在用Redux处理深度复杂的数据时会有一些麻烦.由于js的特性,我们知道当对一个对象进行复制时实际上是复制它的引用,除非你对这个对象进行深度复制.Redux要求你每次你 ...

  4. 多媒体管理器解析IMultimediaManager

    一.基本API bool Available { get; } bool Working { get; } AdvancedOptions Advanced { get; } 二.作为通信引擎 str ...

  5. Java核心基础学习(一)--- 2019年1月

    1.对比Exception和Error,运行时异常与一般异常 Exception 和 Error 都继承了 Throwable 类,在 Java 中只有 Throwable 类才能 thorw(抛出) ...

  6. 从零开始学习PYTHON3讲义(十)自己做一个“电子记事本”

    <从零开始PYTHON3>第十讲 截至上一讲,我们已经完成了Python语言的基本部分.我们用了三讲来讨论Python语言的控制结构,用了两讲来介绍Python的基本数据类型.可以说仅就语 ...

  7. DeviceUuidFactory【获取设备唯一标识码的UUID(加密)】【需要运行时权限的处理的配合】

    版权声明:本文为HaiyuKing原创文章,转载请注明出处! 前言 有时需要对用户设备进行标识,所以希望能够得到一个稳定可靠并且唯一的识别码.虽然Android系统中提供了这样设备识别码,但是由于An ...

  8. Java——泛型

    前言 一般的类和方法,使用的都是具体的类型:基本类型或者自定义的类.如果我们要编写出适用于多种类型的通用代码,那么肯定就不能使用具体的类型.前面我们介绍过多态,多态算是一种泛化机制,但是也会拘泥于继承 ...

  9. c#封装DBHelper类

    public enum EffentNextType { /// <summary> /// 对其他语句无任何影响 /// </summary> None, /// <s ...

  10. OO第二次博客作业——电梯调度

    OO第二次博客作业——电梯调度 前言 最近三周,OO课程进入多线程学习阶段,主要通过三次电梯调度作业来学习.从单部电梯的傻瓜式调度到有性能要求的调度到多部电梯的调度,难度逐渐提升,对同学们的要求逐渐变 ...