[AtCoder arc090F]Number of Digits
Description
记 \(d\) 在十进制下的位数为 \(f(d)\) 。给出询问 \(S\) ,求有多少对 \((l,r)\) 使得 \[\sum_{i=l}^r f(i)=S\]
\(1\leq S\leq 10^8\)
Solution
颓了题解...
注意到当数字越大时 \(f(r)-f(l)\) 会越小。
分两种情况讨论:
\(f(l)\leq 7\) ,这时可以用尺取法来做,可以发现它的右界为 \(10^7+\frac{10^8}{8}=22500000\) ;
\(f(l)\geq 8\) ,我们依旧可以分两种情况来考虑:
\(f(r)-f(l)=0\) ,此时显然选的数都是位数相同的,我们可以统计这种位数的个数 \(sum\) ,该种情况的答案 \(sum-f(l)+1\) ;
\(f(r)-f(l)=1\) 。假设取的数个数为 \(t\) ,即 \(r-l+1=t\) ,取长度为 \(f(l)\) 的个数为 \(x\) ,长度为 \(f(r)\) 的个数为 \(y\) : \[\begin{cases}x+y=t\\x\cdot f(l)+y\cdot f(r)=S\end{cases}\]
那么 \(f(l)\cdot t+y=S\) 我们可以枚举 \(t\) ,容易发现 \(\begin{cases}y=S~mod~t\\x=t-S~mod~t\end{cases}\) ,即对于每个 \(t\) ,都可以解出唯一解。值得注意的是这方面的解会和上面的解重复,即当 \(f(l)\mid S\) 这里会计算一次。
综上可以分情况处理。
Code
//It is made by Awson on 2018.2.3
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int l1 = 10000000;
const int l2 = 25500000;
const int yzh = 1e9+7;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); }
int s, f[l2+5];
int quick_pow(int a, int b) {
int ans = 1;
while (b) {
if (b&1) ans = 1ll*ans*a%yzh;
a = 1ll*a*a%yzh, b >>= 1;
}
return ans;
}
int count1(int n) {
int ans = 0, r = 0, cnt = 0;
for (int i = 1; i < l1; i++) {
cnt -= f[i-1];
while (cnt+f[r+1] <= s && r < l2) cnt += f[++r];
if (cnt == s) ++ans;
if (r == l2) break;
}
return ans;
}
int count2(int n) {
int lim = n/8, ans = lim;
for (int t = 1; t <= lim; t++)
if (n%t == 0) {
int len = n/t;
(ans += (1ll*quick_pow(10, len-1)*9%yzh-t)%yzh) %= yzh;
}
return ans;
}
void work() {
for (int i = 1, r = 10, cnt = 1; i < l1; i++, i = r, r = r*10, cnt++)
for (int j = i; j < r; j++) f[j] = cnt;
for (int i = l1; i <= l2; i++) f[i] = 8;
read(s);
writeln(((count1(s)+count2(s))%yzh+yzh)%yzh);
}
int main() {
work();
return 0;
}
[AtCoder arc090F]Number of Digits的更多相关文章
- AtCoder Regular Contest 090 F - Number of Digits
题目链接 Description For a positive integer \(n\), let us define \(f(n)\) as the number of digits in bas ...
- Find the smallest number whose digits multiply to a given number n
Given a number ‘n’, find the smallest number ‘p’ such that if we multiply all digits of ‘p’, we get ...
- 【leetcode】1295. Find Numbers with Even Number of Digits
题目如下: Given an array nums of integers, return how many of them contain an even number of digits. Exa ...
- AtCoder Beginner Contest 057 ABCD题
A - Remaining Time Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Dol ...
- codeforces Hill Number 数位dp
http://www.codeforces.com/gym/100827/attachments Hill Number Time Limits: 5000 MS Memory Limits: ...
- 2014-2015 ACM-ICPC, NEERC, Moscow Subregional Contest E. Equal Digits
E. Equal Digits time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...
- Codeforces Round #379 (Div. 2) B. Anton and Digits 水题
B. Anton and Digits 题目连接: http://codeforces.com/contest/734/problem/B Description Recently Anton fou ...
- ACdream 1188 Read Phone Number (字符串大模拟)
Read Phone Number Time Limit:1000MS Memory Limit:64000KB 64bit IO Format:%lld & %llu Sub ...
- hdu 1018:Big Number(水题)
Big Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
随机推荐
- Django—urls系统:urls基础
Django的urls系统简介 Django 1.11版本 URLConf官方文档 URL配置(URLconf)就像Django 所支撑网站的目录.它的本质是URL与要为该URL调用的视图函数之间的映 ...
- 网络1711-1712的C语言作业总结(2017-2018第一学期)
1.第0次作业总结--预备作业 作业地址 1711班级总结 1712班级总结 2.第一次作业总结--顺序结构 作业地址 1711班级总结 1712班级总结 3.第二次作业总结--分支结构 作业地址 1 ...
- Python 科学计算-介绍
Python 科学计算 作者 J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/ 最新版本的 IPython notebook 课程文 ...
- Python randrange() 函数
Python randrange() 函数 Python 数字 描述 randrange() 方法返回指定递增基数集合中的一个随机数,基数缺省值为1. 语法 以下是 randrange() 方法的语 ...
- 自主学习之RxSwift(二) -----flatMap
最近项目中有这么一个需求,下面是三个网络请求 A.从服务器获取到时间戳(GET 方法,获取 timeLine) B.进行用户头像上传,获得回传的URL(POST方法,参数为 userId, timeL ...
- js的 == 和 ===的区别
1.对于string,number等基础类型,==和===是有区别的 不同类型间比较,==之比较转化成同一类型后的值看值是否相等,===如果类型不同,其结果就是不等,同类型比较,直接进行"值 ...
- 第四篇:用IntelliJ IDEA 搭建基于jersey的RESTful api
编译器:Intellij IDEA 系统环境: MAC OS 相关技术:Maven.tomcat 7.jdk8 1.创建项目 首先创建一个web Application项目(这里我们打算用maven引 ...
- 构建微服务开发环境8————Hello 微服务
[内容指引] 1.用IDEA打开微服务项目; 2.更新Maven依赖: 3.IntelliJ IDEA JDK配置; 4.修改代码: 5.运行微服务: 6.将代码变更提交到Github. 经过前面的努 ...
- php网上支付易宝
巴巴运动网是通过易宝向招商银行打钱,这个首先易宝是需要审核巴巴运动网的钱来的是否正当不然易宝就成了一个洗钱的工具,这个是犯法的:因为钱的来路不明!财政部是需要抓起来的!所以钱的流向实际上是用户的招商银 ...
- Web Api 利用 cors 实现跨域
一.安装 cors 二.修改 Web.config <appSettings> <add key="cors:allowedMethods" value=&quo ...