【JSOI2008】星球大战 (并查集)
题面
Description
很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系。某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球。这些星球通过特殊的以太隧道互相直接或间接地连接。 但好景不长,很快帝国又重新造出了他的超级武器。凭借这超级武器的力量,帝国开始有计划地摧毁反抗军占领的星球。由于星球的不断被摧毁,两个星球之间的通讯通道也开始不可靠起来。现在,反抗军首领交给你一个任务:给出原来两个星球之间的以太隧道连通情况以及帝国打击的星球顺序,以尽量快的速度求出每一次打击之后反抗军占据的星球的连通快的个数。(如果两个星球可以通过现存的以太通道直接或间接地连通,则这两个星球在同一个连通块中)。
Input
第一行包含两个整数N (2 ≤ N ≤ 2M)和M (1 ≤ M ≤ 200,000),分别表示星球的数目和“以太”隧道的数目。星球用0到N – 1的整数编号。
接下来的M行,每行包含两个整数X和Y (0 ≤ X ≠ Y < N),表示星球X和星球Y之间有“以太”隧道,可以直接通讯。
接下来的一行包含一个整数K,表示将遭受攻击的星球的数目。
接下来的K行,每行一个整数,按照顺序列出了帝国军的攻击目标。这K个数互不相同,且都在0到N – 1的范围内。
Output
第一行是开始时星球的连通块个数。接下来的N行,每行一个整数,表示经过该次打击后现存星球的连通块个数。
Sample Input
8 13
0 1
1 6
6 5
5 0
0 6
1 2
2 3
3 4
4 5
7 1
7 2
7 6
3 6
5
1
6
3
5
7
Sample Output
1
1
1
2
3
3
题解
考虑正向来做的话,很显然,无法维护联通快,只能够每一次重新来做一遍并查集(因为你要拆边)
但是,反着来看这道题,每次恢复一个点,这样就可以并查集来搞了。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 1000000
inline int read()
{
register int x=0,t=1;
register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
struct Line
{
int v,next;
}e[MAX];
int h[MAX],cnt=1,A[MAX];
int f[MAX],tt[MAX];
bool killed[MAX];
int N,M,KK,Ans;
inline void Add(int u,int v)
{
e[cnt]=(Line){v,h[u]};
h[u]=cnt++;
}
int getf(int x)
{
return x==f[x]?x:f[x]=getf(f[x]);
}
int main()
{
N=read();M=read();
for(int i=1;i<=M;++i)
{
int u=read()+1,v=read()+1;
Add(u,v);Add(v,u);
}
KK=read();
for(int i=1;i<=KK;++i)
{
tt[i]=read()+1;
killed[tt[i]]=true;
}
for(int i=1;i<=N;++i)f[i]=i;
for(int i=1;i<=N;++i)
{
if(!killed[i])
{
for(int j=h[i];j;j=e[j].next)
{
if(!killed[e[j].v])
f[getf(i)]=getf(e[j].v);
}
}
}
for(int i=1;i<=N;++i)if(f[i]==i&&!killed[i])++Ans;
A[KK+1]=Ans;
for(int i=KK;i;--i)
{
killed[tt[i]]=false;Ans++;
for(int j=h[tt[i]];j;j=e[j].next)
{
if(killed[e[j].v])continue;
int x=getf(e[j].v),y=getf(tt[i]);
if(x==y)continue;
else
{
f[x]=y;
--Ans;
}
}
A[i]=Ans;
}
for(int i=1;i<=KK+1;++i)
printf("%d\n",A[i]);
return 0;
}
【JSOI2008】星球大战 (并查集)的更多相关文章
- 洛谷P1197 [JSOI2008] 星球大战 [并查集]
题目传送门 星球大战 题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系. 某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这 ...
- JSOI2008 星球大战 [并查集]
题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系. 某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球通过特殊的以太隧 ...
- P1197 [JSOI2008]星球大战[并查集+图论]
题目来源:洛谷 题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治着整个星系. 某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球 ...
- P1197 [JSOI2008]星球大战 并查集 反向
题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治着整个星系. 某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球通过特殊的以太隧 ...
- [bzoj1015][JSOI2008]星球大战——并查集+离线处理
题解 给定一张图,支持删点和询问连通块个数 按操作顺序处理的话要在删除点的同时维护图的形态(即图具体的连边情况),这是几乎不可做的 我们发现,这道题可以先读入操作,把没删的点的边先连上,然后再倒序处理 ...
- 洛谷 P1197 [JSOI2008]星球大战——并查集
先上一波题目 https://www.luogu.org/problem/P1197 很明显删除的操作并不好处理 那么我们可以考虑把删边变成加边 只需要一波时间倒流就可以解决拉 储存删边顺序倒过来加边 ...
- BZOJ_1015_星球大战_[JSOI2008]_(并查集)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1015 n 个点,被 m 条边相连.进行k次删点操作,问第一次操作前和每次操作后的集合数(直接或 ...
- 【BZOJ1015】【JSOI2008】星球大战 并查集
题目大意 给你一张\(n\)个点\(m\)条边的无向图,有\(q\)次操作,每次删掉一个点以及和这个点相邻的边,求最开始和每次删完点后的连通块个数. \(q\leq n\leq 400000,m\le ...
- 【JSOI2008】星球大战 并查集
题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治着整个星系. 某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球通过特殊的以太隧 ...
- BZOJ-1015 StarWar星球大战 并查集+离线处理
1015: [JSOI2008]星球大战starwar Time Limit: 3 Sec Memory Limit: 162 MB Submit: 4105 Solved: 1826 [Submit ...
随机推荐
- Properties工具类
/** * 加载Properties文件 * @param path Properties文件路径 * @return */ private static Properties getClasspat ...
- linux打印彩色字
echo显示带颜色,需要使用参数-e格式如下:echo -e "\033[字背景颜色;文字颜色m字符串\033[0m"例如: echo -e "\033[41;37m T ...
- phpstorm使用之——常用快捷键
phpstorm使用之--常用快捷键 使用IDE的根本所在乃是为了提高工作效率. windows下phpstorm的快捷键 ctrl+shift+n查找文件 ctrl+shift+f 在一个目录里查找 ...
- centos安装软件依赖问题
yum install gcc gcc-c++ ncurses-devel perl 基础包安装
- idea 使用debugger技巧
1,背景 每个开发人员每天都离不开debugger,只要你在编码,就需要调试,作为一个开发快10年的老程序员每天都要写很多代码,当每个人接到任务的时候都会想,这些功能其实很快就能写完,没错,对于写代码 ...
- hdu 1878 无向图的欧拉回路
原题链接 hdu1878 大致题意: 欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个无向图,问是否存在欧拉回路? 思路: 无向图存在欧拉回路的条件:1.图是连 ...
- CodeForces-740B Alyona and flowers
题目要求选择一些花的集合,如果暴力去枚举每种选择方法明显是不行的.换种方式考虑:每一个集合都能为最后的答案做出要么正的.要么负的.要么0贡献,先把所有集合能做出的贡献预处理,然后从m个集合里面选择贡献 ...
- nyoj1246 逃离妖洞 BFS
逃离妖洞 描述 唐僧不小心又掉入妖怪的迷宫了.这个迷宫有n行m列,共n*m个方格.有的方格是空的,唐僧可以站在上面,有些是有障碍物的不能站.每次唐僧可以移动到相邻的8个空方格上.但是有些情况不 ...
- 【视频编解码·学习笔记】8. 熵编码算法:基本算法列举 & 指数哥伦布编码
一.H.264中的熵编码基本方法: 熵编码具有消除数据之间统计冗余的功能,在编码端作为最后一道工序,将语法元素写入输出码流 熵解码作为解码过程的第一步,将码流解析出语法元素供后续步骤重建图像使用 在H ...
- Hadoop编译方法
伪分布式: hadoop-env.sh core-site.xml hdfs-site.xml mapred-site.xml 1.在hadoop官网下载hadoop的源码(同步跟踪最新源代码) mv ...