题目大意:

网址:https://www.luogu.org/problemnew/show/3231
大意:a×b×c的三维空间里有a×b×c个点(x,y,z),其中有些点需要被消除。
消除的方法为:每次选定一个a1×b1×c1的三维区域,然后消除这个区域内的所有点。
消除的代价\(cost = min(a1,b1,c1);\)
现在询问消除此三维空间中所有需要消除点的最小代价为多少。
数据范围:\(a*b*c<=5000\)

题目解法:

显然题目可以转化为每次选择一个平面,然后消除该平面上的所有点。
先考虑二维空间,这不是超级无敌大水题吗。
二维不就是裸的二分图最小顶点覆盖吗?不明白怎么做的去AC一下这题:poj3041-Asteroids
三维咋办?
观察到\(a*b*c<=5000\),那么a、b、c中至少有一个是小于等于17的。
我们枚举最小的这一维是否切割,如果不切再跑最小顶点覆盖即可。
然后这题最要命的其实不是怎么做,而是怎么实现。
考虑一下建图怎么办,开个三维数组乱搞、旋转肯定是不行的。
其实可以把每一个点拆成三个坐标,然后连边(具体看代码,讲也讲不清)。

具体实现代码:

#include<bits/stdc++.h>
#define gi(x) scanf("%d",&x)
#define maxn 5005
#define INF 1e9+7
using namespace std;

int D,L[4],d,pos,g1,g2,g3,use[maxn];
struct Road{int to,next,blg;}t[2*maxn]; int head[maxn],cnt;
int mtc[maxn],vis[maxn],Ans;

void Add(int u,int v,int w){
    t[++cnt] = (Road){v,head[u]}; head[u] = cnt;
    t[++cnt] = (Road){u,head[v]}; head[v] = cnt;
    t[cnt-1].blg = t[cnt].blg = w;
}

//建图:
void Build(){
    gi(L[1]); gi(L[2]); gi(L[3]);
    pos = 1; cnt = 0;
    for(int i = 1; i <= 3; i ++)
        if(L[ i ] < L[ pos ])pos = i;
    if(pos == 1)g1 = L[1],g2 = L[2],g3 = L[3];
    if(pos == 2)g1 = L[2],g2 = L[1],g3 = L[3];
    if(pos == 3)g1 = L[3],g2 = L[1],g3 = L[2];
    for(int i = 1; i <= g2+g3; i ++)head[i] = 0;
    for(int i = 1; i <= L[1]; i ++)
        for(int j = 1; j <= L[2]; j ++)
            for(int k = 1; k <= L[3]; k ++){
                gi(d); if(!d)continue;
                if(pos == 1)Add(j , g2 + k , i );
                if(pos == 2)Add(i , g2 + k , j );
                if(pos == 3)Add(i , g2 + j , k );
            }
    return;
}

bool Hungarian(int u,int Vis){
    for(int i = head[u]; i; i = t[i].next){
        int v = t[i].to;
        if(vis[v] != Vis && !use[t[i].blg]){
            vis[v] = Vis;
            if(!mtc[v] || Hungarian(mtc[v],Vis)){
                mtc[v] = u; mtc[u] = v;
                return true;
            }
        }
    }return false;
}

inline int Solve(int ret){
    int Res = 0;
    for(int i = 1; i <= g2+g3; i ++)mtc[i] = 0;
    for(int i = 1; i <= g2+g3; i ++)vis[i] = 0;
    for(int i = 1; i <= g2; i ++){
        if(mtc[i])continue;
        if(Hungarian(i,i))Res++;
        if(Res + ret >= Ans)return Res + ret;
    }return Res + ret;
}

void Dfs(int nw,int ret){
    if(nw == L[pos]+1){Ans = min(Ans,Solve(ret)); return;}
    use[nw] = true; Dfs(nw+1,ret+1);
    use[nw] = false; Dfs(nw+1,ret);
}

int main(){
    gi(D);
    while(D--){
        Build();
        Ans = INF;
        Dfs(1,0);  printf("%d\n",Ans);
    }
    return 0;
}

[HNOI2013]消毒的更多相关文章

  1. [BZOJ3140][HNOI2013]消毒(二分图最小点覆盖)

    3140: [Hnoi2013]消毒 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1621  Solved: 676[Submit][Status] ...

  2. bzoj 3140: [Hnoi2013]消毒

    3140: [Hnoi2013]消毒 Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为a*b*c,a.b.c 均为正整数 ...

  3. P3231 [HNOI2013]消毒

    P3231 [HNOI2013]消毒 二维覆盖我们已经很熟悉了 扩展到三维,枚举其中较小的一维,这里定义为$a$ 以$a$为关键字状压,$1$表示该面全选 剩下的面和二维覆盖一样二分图匹配 如果还没接 ...

  4. 3140:[HNOI2013]消毒 - BZOJ

    题目描述 Description 最近在生物实验室工作的小 T 遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为 a*b*c,a.b.c均为正整数.为了实验的方便,它被划 ...

  5. bzoj3140: [Hnoi2013]消毒

    Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为a*b*c,a.b.c 均为正整数.为了实验的方便,它被划分为a*b*c ...

  6. 【刷题】BZOJ 3140 [Hnoi2013]消毒

    Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为abc,a.b.c 均为正整数.为了实验的方便,它被划分为abc个单位立 ...

  7. BZOJ3140:[HNOI2013]消毒——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=3140 https://www.luogu.org/problemnew/show/P3231 最近在 ...

  8. bzoj3140: [Hnoi2013]消毒(二分图)

    题目描述 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为a*b*c,a.b.c 均为正整数.为了实验的方便,它被划分为a*b*c个单位立方体区 ...

  9. [luogu3231 HNOI2013] 消毒 (二分图最小点覆盖)

    传送门 Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为abc,a.b.c 均为正整数.为了实验的方便,它被划分为abc ...

随机推荐

  1. Linux下配置APACHE支持PHP环境

    编辑 /usr/local/apache2/conf/httpd.conf 文件时要注意: 找到: AddType application/x-compress .Z AddType applicat ...

  2. maven配置全局的jdk和配置局部的jdk

    配置全局的jdk需要修改maven的setting.xml文件 <profile> <id>jdk17</id> <activation> <ac ...

  3. 01_JavaSE之OOP--面向对象(类和面向对象的简单认识)

    面向对象(一) 一.面向对象概述 谈到面向对象就不得不谈谈面向过程,面向对象也是由面向过程发展而来. 面向过程思想概述 面向过程,简而言之就是分步骤,过程化的去解决问题,代表语言有:Pascal,C等 ...

  4. LIMS系统仪器数据采集-使用xpdf解析pdf内容

    不同语言解析PDF内容都有各自的库,比如Java的pdfbox,.net的itextsharp. c#解析PDF文本,关键代码可参考: http://www.cnblogs.com/mahongbia ...

  5. angular4升级angular5问题记录之No NgModule metadata found for 'AppModule'

    在将项目从angular4升级到angular5的过程中,出现No NgModule metadata found for 'AppModule'问题,网上查找答案将app.module.ts进行再次 ...

  6. OSI网络模型

    OSI中的层 功能 TCP/IP协议族 应用层         文件传输,电子邮件,文件服务,虚拟终端 TFTP,HTTP,SNMP,FTP,SMTP,DNS,Telnet 表示层         数 ...

  7. java中错误日志的用法

    1.maven包:将下面的maven加入到pom.xml <!-- https://mvnrepository.com/artifact/log4j/log4j --><depend ...

  8. C++学习笔记第二天:几个知识点

    第一天,囫囵吞枣的把C++的基本概念撸了一遍 有几个地方不太理解,今天有针对性的学习一下 1.namespace 自定义命名空间,主要为了解决类.函数和全局变量的命名冲突问题. 调用某个命名空间里的符 ...

  9. 解析setTimeout时间设置为0

    1.开胃菜,setTimeout为何物 首先看一下w3school上面对于setTimeout的解释 setTimeout(fn,millisec) 方法用于在指定的毫秒数后调用函数或计算表达式. 很 ...

  10. django框架 - 实时查看执行的sql语句

    django框架采用的ORM模型,我们可以通过mysql的日志记录实时看到执行的sql语句,具体步骤如下: 第一步:找到mysql的配置文件 第二步:编辑mysql配置文件 第三步:重启mysql 第 ...