LuoguP4234_最小差值生成树_LCT
LuoguP4234_最小差值生成树_LCT
题意:
给出一个无向图,求最大的边权减最小的边权最小的一棵生成树。
分析:
可以把边权从大到小排序,然后类似魔法森林那样插入。
如果两点不连通,直接连上,否则找到两点间最大的边权替换。
如果生成一棵树了就更新答案。
LCT维护边权的最大值即可。
代码:
// luogu-judger-enable-o2
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 400050
#define M 200050
#define ls ch[p][0]
#define rs ch[p][1]
#define get(x) (ch[f[x]][1]==x)
struct A {
int x,y,v;
}a[N];
bool cmp(const A &x,const A &y){return x.v>y.v;}
int ch[N][2],f[N],val[N],siz[N],rev[N],mx[N],tot,n,m,kill[M];
inline bool isrt(int p) {
return ch[f[p]][1]!=p&&ch[f[p]][0]!=p;
}
inline void pushup(int p) {
mx[p]=p;
if(val[mx[ls]]>val[mx[p]]) mx[p]=mx[ls];
if(val[mx[rs]]>val[mx[p]]) mx[p]=mx[rs];
}
inline void pushdown(int p) {
if(rev[p]) {
swap(ch[ls][0],ch[ls][1]);
swap(ch[rs][0],ch[rs][1]);
rev[ls]^=1; rev[rs]^=1;
rev[p]=0;
}
}
void update(int p) {
if(!isrt(p)) update(f[p]);
pushdown(p);
}
void rotate(int x) {
int y=f[x],z=f[y],k=get(x);
if(!isrt(y)) ch[z][ch[z][1]==y]=x;
ch[y][k]=ch[x][!k]; f[ch[y][k]]=y;
ch[x][!k]=y; f[y]=x; f[x]=z;
pushup(y); pushup(x);
}
void splay(int x) {
update(x);
for(int fa;fa=f[x],!isrt(x);rotate(x))
if(!isrt(fa))
rotate(get(x)==get(fa)?fa:x);
}
void access(int p) {
int t=0;
while(p) {
splay(p);
rs=t;
pushup(p);
t=p;
p=f[p];
}
}
void makeroot(int p) {
access(p); splay(p);
swap(ls,rs); rev[p]^=1;
}
void link(int x,int p) {
makeroot(x); splay(p); f[x]=p;
}
void cut(int x,int p) {
makeroot(x); access(p); splay(p); ls=f[x]=0;
}
int find(int p) {
access(p); splay(p);
while(ls) pushdown(p),p=ls;
return p;
}
int query(int x,int p) {
makeroot(x); access(p); splay(p); return mx[p];
}
int now=1;
int calc() {
while(kill[now]&&now<=m) now++;
return a[now].v;
}
int main() {
int ans=1<<30;
scanf("%d%d",&n,&m);
int i;
for(i=1;i<=n;i++) mx[i]=i;
for(i=1;i<=m;i++) {
scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].v);
}
sort(a+1,a+m+1,cmp);
tot=n;
int ne=0;
for(i=1;i<=m;i++) {
int x=a[i].x,y=a[i].y;
tot++;
if(x==y) {
kill[i]=1;
continue;
}
int dx=find(x),dy=find(y);
if(dx!=dy) {
ne++;
val[tot]=a[i].v; mx[tot]=tot; link(x,tot); link(tot,y);
}else {
int k=query(x,y);
kill[k-n]=1;
// printf("%d %d %d\n",k,a[k-n].x,a[k-n].y);
cut(a[k-n].x,k); cut(k,a[k-n].y);
val[tot]=a[i].v; mx[tot]=tot; link(x,tot); link(tot,y);
}
if(ne==n-1) {
ans=min(ans,calc()-a[i].v);
}
}
printf("%d\n",ans);
}
LuoguP4234_最小差值生成树_LCT的更多相关文章
- [luogu4234]最小差值生成树
[luogu4234]最小差值生成树 luogu 从小到大枚举边,并连接,如果已连通就删掉路径上最小边 lct维护 \(ans=min(E_{max}-E_{min})\) #include<b ...
- P4234 最小差值生成树
题目 P4234 最小差值生成树 做法 和这题解法差不多,稍微变了一点,还不懂就直接看代码吧 \(update(2019.2):\)还是具体说一下吧,排序,直接加入,到了成环情况下,显然我们要把此边代 ...
- POJ 3522 Slim Span 最小差值生成树
Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...
- 洛谷.4234.最小差值生成树(LCT)
题目链接 先将边排序,这样就可以按从小到大的顺序维护生成树,枚举到一条未连通的边就连上,已连通则(用当前更大的)替换掉路径上最小的边,这样一定不会更差. 每次构成树时更新答案.答案就是当前边减去生成树 ...
- TZOJ 3710 修路问题(最小差值生成树kruskal或者LCT)
描述 xxx国“山头乡”有n个村子,政府准备修建乡村公路,由于地形复杂,有些乡村之间可能无法修筑公路,因此政府经过仔细的考察,终于得到了所有可能的修路费用数据.并将其公布于众,广泛征求村民的修路意见. ...
- 【刷题】洛谷 P4234 最小差值生成树
题目描述 给定一个标号为从 \(1\) 到 \(n\) 的.有 \(m\) 条边的无向图,求边权最大值与最小值的差值最小的生成树. 输入输出格式 输入格式: 第一行两个数 \(n, m\) ,表示图的 ...
- 洛谷P4234 最小差值生成树(lct动态维护最小生成树)
题目描述 给定一个标号为从 11 到 nn 的.有 mm 条边的无向图,求边权最大值与最小值的差值最小的生成树. 输入输出格式 输入格式: 第一行两个数 n, mn,m ,表示图的点和边的数量. ...
- POJ 3522 最小差值生成树(LCT)
题目大意:给出一个n个节点的图,求最大边权值减去最小边权值最小的生成树. 题解 Flash Hu大佬一如既往地强 先把边从小到大排序 然后依次加入每一条边 如果已经连通就把路径上权值最小的边删去 然后 ...
- P4234 最小差值生成树 LCT维护边权
\(\color{#0066ff}{ 题目描述 }\) 给定一个标号为从 \(1\) 到 \(n\) 的.有 \(m\) 条边的无向图,求边权最大值与最小值的差值最小的生成树. \(\color{#0 ...
随机推荐
- Flask-email 发送邮件的配置,发送附件的方法,以及os.environ.get('MAIL_USERNAME')为None的解决办法
一.发送邮件的配置 在学习flask-mail来发送电子邮件的时候遇到了一些问题,其实都是些小问题,现在记录下来以便于以后查看. 1.首先flask-mail的安装 pip install flask ...
- 03_Linux FTP
linux搭建ftp server,在windows向上传 http://www.2cto.com/os/201204/126898.html yum install vsftp.rpm 安装v ...
- 安装VirtualBox后 不能选择64bit的系统
之前在台式机上安装VirtualBox,一切OK,能够安装64位的任何版本iso包今天在hp笔记本上安装,安装VirtualBox完毕后,只能选择32位的iso版本. 而我目前只有一个linux64b ...
- mysql-索引、关系、范式
索引 几乎所有的索引都是建立在字段之上 索引:系统根据某种算法,将已有的数据(未来可能新增的数据也算),单独建立一个文件,这个文件能够快速的匹配数据,并且能够快速的找到对应的表中的记录 索引意义 能够 ...
- Pygame常用方法
'''import pygame# 初始化pygame库,让计算机硬件准备pygame.init()# ----------窗口相关操作-----------# 创建窗口window = pygame ...
- springboot: thymeleaf 使用详解
springboot:thymeleaf,这篇文章将更加全面详细的介绍thymeleaf的使用.thymeleaf 是新一代的模板引擎,在spring4.0中推荐使用thymeleaf来做前端模版引擎 ...
- 使用crypto-js对数据进行AES加密、解密
前段时间做项目有用到数据加密,前端加密,后端解密(前端也可以解密),话不多说进入正题: 第一步: npm i crypto-js -S 第二步: 在需要加密或解密的地方引入crypto-js: imp ...
- 调用约定__cdecl __fastcall与__stdcall
__cdecl __fastcall与__stdcall,三者都是调用约定(Calling convention),它决定以下内容:1)函数参数的压栈顺序,2)由调用者还是被调用者把参数弹出栈,3)以 ...
- @EnableTransactionManagement注解理解
@EnableTransactionManagement表示开启事务支持,在springboot项目中一般配置在启动类上,效果等同于xml配置的<tx:annotation-driven /&g ...
- @Controller和@RestController之间的区别
1. Controller, RestController的共同点 都是用来表示Spring某个类的是否可以接收HTTP请求 2. Controller, RestController的不同点 @Co ...