Given a non-empty string, encode the string such that its encoded length is the shortest.

The encoding rule is: k[encoded_string], where the encoded_string inside the square brackets is being repeated exactly k times.

Note:

  1. k will be a positive integer and encoded string will not be empty or have extra space.
  2. You may assume that the input string contains only lowercase English letters. The string's length is at most 160.
  3. If an encoding process does not make the string shorter, then do not
    encode it. If there are several solutions, return any of them is fine.

Example 1:

Input: "aaa"
Output: "aaa"
Explanation: There is no way to encode it such that it is shorter than the input string, so we do not encode it.

Example 2:

Input: "aaaaa"
Output: "5[a]"
Explanation: "5[a]" is shorter than "aaaaa" by 1 character.

Example 3:

Input: "aaaaaaaaaa"
Output: "10[a]"
Explanation: "a9[a]" or "9[a]a" are also valid solutions, both of them have the same length = 5, which is the same as "10[a]".

Example 4:

Input: "aabcaabcd"
Output: "2[aabc]d"
Explanation: "aabc" occurs twice, so one answer can be "2[aabc]d".

Example 5:

Input: "abbbabbbcabbbabbbc"
Output: "2[2[abbb]c]"
Explanation: "abbbabbbc" occurs twice, but "abbbabbbc" can also be encoded to "2[abbb]c", so one answer can be "2[2[abbb]c]".
 
这道题让我们压缩字符串,把相同的字符串用中括号括起来,然后在前面加上出现的次数,感觉还是一道相当有难度的题呢。参考了网上大神的帖子才弄懂该怎么做,这道题还是应该用DP来做。我们建立一个二维的DP数组,其中dp[i][j]表示s在[i, j]范围内的字符串的缩写形式(如果缩写形式长度大于子字符串,那么还是保留子字符串),那么如果s字符串的长度是n,最终我们需要的结果就保存在dp[0][n-1]中,然后我们需要遍历s的所有子字符串,对于任意一段子字符串[i, j],我们\\我们以中间任意位置k来拆分成两段,比较dp[i][k]加上dp[k+1][j]的总长度和dp[i][j]的长度,将长度较小的字符串赋给dp[i][j],然后我们要做的就是在s中取出[i, j]范围内的子字符串t进行合并。合并的方法是我们在取出的字符串t后面再加上一个t,然后在这里面寻找子字符串t的第二个起始位置,如果第二个起始位置小于t的长度的话,说明t包含重复字符串,举个例子吧,比如 t = "abab", 那么t+t = "abababab",我们在里面找第二个t出现的位置为2,小于t的长度4,说明t中有重复出现,重复的个数为t.size()/pos = 2个,那么我们就要把重复的地方放入中括号中,注意中括号里不能直接放这个子字符串,而是应该从dp中取出对应位置的字符串,因为重复的部分有可能已经写成缩写形式了,比如题目中的例子5。再看一个例子,如果t = "abc",那么t+t = "abcabc",我们在里面找第二个t出现的位置为3,等于t的长度3,说明t中没有重复出现,那么replace就还是t。然后我们比较我们得到的replace和dp[i][j]中的字符串长度,把长度较小的赋给dp[i][j]即可,时间复杂度为O(n3),空间复杂度为O(n2),参见代码如下:
 
解法一:
class Solution {
public:
string encode(string s) {
int n = s.size();
vector<vector<string>> dp(n, vector<string>(n, ""));
for (int step = ; step <= n; ++step) {
for (int i = ; i + step - < n; ++i) {
int j = i + step - ;
dp[i][j] = s.substr(i, step);
for (int k = i; k < j; ++k) {
string left = dp[i][k], right = dp[k + ][j];
if (left.size() + right.size() < dp[i][j].size()) {
dp[i][j] = left + right;
}
}
string t = s.substr(i, j - i + ), replace = "";
auto pos = (t + t).find(t, );
if (pos >= t.size()) replace = t;
else replace = to_string(t.size() / pos) + '[' + dp[i][i + pos - ] + ']';
if (replace.size() < dp[i][j].size()) dp[i][j] = replace;
}
}
return dp[][n - ];
}
};

根据热心网友iffalse的留言,我们可以优化上面的方法。如果t是重复的,是不是就不需要再看left.size() + right.size() < dp[i][j].size()了。例如t是abcabcabcabcabc, 最终肯定是5[abc],不需要再看3[abc]+abcabc或者abcabc+3[abc]。对于一个本身就重复的字符串,最小的长度肯定是n[REPEATED],不会是某个left+right。所以应该把k的那个循环放在t和replace那部分代码的后面。这样的确提高了一些运算效率的,参见代码如下:

解法二:

class Solution {
public:
string encode(string s) {
int n = s.size();
vector<vector<string>> dp(n, vector<string>(n, ""));
for (int step = ; step <= n; ++step) {
for (int i = ; i + step - < n; ++i) {
int j = i + step - ;
dp[i][j] = s.substr(i, step);
string t = s.substr(i, j - i + ), replace = "";
auto pos = (t + t).find(t, );
if (pos < t.size()) {
replace = to_string(t.size() / pos) + "[" + dp[i][i + pos - ] + "]";
if (replace.size() < dp[i][j].size()) dp[i][j] = replace;
continue;
}
for (int k = i; k < j; ++k) {
string left = dp[i][k], right = dp[k + ][j];
if (left.size() + right.size() < dp[i][j].size()) {
dp[i][j] = left + right;
}
}
}
}
return dp[][n - ];
}
};

类似题目:

Decode String

Number of Atoms

参考资料:

https://leetcode.com/problems/encode-string-with-shortest-length/

https://leetcode.com/problems/encode-string-with-shortest-length/discuss/95599/Accepted-Solution-in-Java

https://leetcode.com/problems/encode-string-with-shortest-length/discuss/95605/Easy-to-understand-C%2B%2B-O(n3)-solution

https://leetcode.com/problems/encode-string-with-shortest-length/discuss/95619/C%2B%2B-O(N3)-time-O(N2)-space-solution-using-memorized-dynamic-programming-with-detail-explanations

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Encode String with Shortest Length 最短长度编码字符串的更多相关文章

  1. Leetcode: Encode String with Shortest Length && G面经

    Given a non-empty string, encode the string such that its encoded length is the shortest. The encodi ...

  2. Leetcode 8. String to Integer (atoi) atoi函数实现 (字符串)

    Leetcode 8. String to Integer (atoi) atoi函数实现 (字符串) 题目描述 实现atoi函数,将一个字符串转化为数字 测试样例 Input: "42&q ...

  3. 【LeetCode每天一题】Length of Last Word(字符串中最后一个单词的长度)

    Given a string s consists of upper/lower-case alphabets and empty space characters ' ', return the l ...

  4. [LeetCode] Construct String from Binary Tree 根据二叉树创建字符串

    You need to construct a string consists of parenthesis and integers from a binary tree with the preo ...

  5. [LeetCode] Decode String 解码字符串

    Given an encoded string, return it's decoded string. The encoding rule is: k[encoded_string], where ...

  6. LeetCode : Given a string, find the length of the longest serial substring without repeating characters.

    Given a string, find the length of the longest serial substring without repeating characters. Exampl ...

  7. Leetcode 943. Find the Shortest Superstring(DP)

    题目来源:https://leetcode.com/problems/find-the-shortest-superstring/description/ 标记难度:Hard 提交次数:3/4 代码效 ...

  8. hust--------The Minimum Length (最短循环节)(kmp)

    F - The Minimum Length Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format:%lld & %l ...

  9. [LeetCode] Reverse String II 翻转字符串之二

    Given a string and an integer k, you need to reverse the first k characters for every 2k characters ...

随机推荐

  1. Python中的类、对象、继承

    类 Python中,类的命名使用帕斯卡命名方式,即首字母大写. Python中定义类的方式如下: class 类名([父类名[,父类名[,...]]]): pass 省略父类名表示该类直接继承自obj ...

  2. react-native ListView使用详解

    刚好今天七夕,呆萌的程序猿没有妹纸,刚好发小明天结婚,我还在异地,晚上还要苦逼的赶火车.趁着下午比较闲,更新一下Blog,也算是在百无聊赖之时给众多单身程序猿们的小福利吧,虽然已经好久没更了...囧 ...

  3. FastDFS 安装及使用

    FastDFS 安装及使用 2012-11-17 13:10:31|  分类: Linux|举报|字号 订阅     Google了一下,流行的开源分布式文件系统有很多,介绍如下:   mogileF ...

  4. MYSQL基础知识和操作(二).png

  5. Windows Form调用R进行绘图并显示

    R软件功能非常强大,可以很好的进行各类统计,并能输出图形.下面介绍一种R语言和C#进行通信的方法,并将R绘图结果显示到WinForm UI界面上. 1 前提准备 安装R软件,需要安装32位的R软件,6 ...

  6. 移动端web开发——视口

    本篇主要是记录一下移动端视口的分类说明和其它的一些知识.在开始之前,先看一个典型的例子: <meta name="viewport" content="width= ...

  7. SAP(ABAP) 显示等待图标的FM:SAPGUI_PROGRESS_INDICATOR-SAP进度条

    在执行一些数据量大的报表时候,为了防止用户认为是死机,可以再程序中添加正在处理的图标,可以CALL一个 FM来实现. CALL FUNCTION 'SAPGUI_PROGRESS_INDICATOR' ...

  8. UICollectionViewCell定制Button

    UICollectionViewCell定制Button 效果 特点 1.能够动态设置每行显示的按钮的个数,以及控件的摆放格式 2.实现单选或者多选的功能,实现点击事件 3.自定制按钮的显示样式 用法 ...

  9. UITabBarController 基本定制

    UITabBarController 定制 特点 用法 1.准备好你的tabBar图片及其他图片(哈哈哈!!!!),我的图片都放在了Assets.xcassets中. 2.导入本工程中的Categro ...

  10. Android事件分发机制浅谈(二)--源码分析(ViewGroup篇)

    上节我们大致了解了事件分发机制的内容,大概流程,这一节来分析下事件分发的源代码. 我们先来分析ViewGroup中dispatchTouchEvent()中的源码 public boolean dis ...