源自:https://github.com/ethz-asl/grid_map

Grid Map

Overview

This is a C++ library with ROS interface to manage two-dimensional grid maps with multiple data layers. It is designed for mobile robotic mapping to store data such as elevation, variance, color, friction coefficient, foothold quality, surface normal, traversability etc. It is used in theRobot-Centric Elevation Mapping package designed for rough terrain navigation.

Features:

  • Multi-layered: Developed for universal 2.5-dimensional grid mapping with support for any number of layers.
  • Efficient map re-positioning: Data storage is implemented as two-dimensional circular buffer. This allows for non-destructive shifting of the map's position (e.g. to follow the robot) without copying data in memory.
  • Based on Eigen: Grid map data is stored as Eigen data types. Users can apply available Eigen algorithms directly to the map data for versatile and efficient data manipulation.
  • Convenience functions: Several helper methods allow for convenient and memory safe cell data access. For example, iterator functions for rectangular, circular, polygonal regions and lines are implemented.
  • ROS interface: Grid maps can be directly converted to and from ROS message types such as PointCloud2, OccupancyGrid, GridCells, and our custom GridMap message.
  • OpenCV interface: Grid maps can be seamlessly converted from and toOpenCV image types to make use of the tools provided byOpenCV.
  • Visualizations: The grid_map_rviz_plugin renders grid maps as 3d surface plots (height maps) inRViz. Additionally, the grid_map_visualization package helps to visualize grid maps as point clouds, occupancy grids, grid cells etc.

The grid map package has been tested with ROS Indigo, Jade (under Ubuntu 14.04) and Kinetic (under Ubuntu 16.04). This is research code, expect that it changes often and any fitness for a particular purpose is disclaimed.

The source code is released under a BSD 3-Clause license.

Author: Péter Fankhauser
Maintainer: Péter Fankhauser, pfankhauser@ethz.ch
With contributions by: Martin Wermelinger, Philipp Krüsi, Remo Diethelm, Ralph Kaestner, Elena Stumm, Dominic Jud, Daniel Stonier, Christos Zalidis
Affiliation: Autonomous Systems Lab, ETH Zurich

Publications

If you use this work in an academic context, please cite the following publication(s):

  • P. Fankhauser and M. Hutter,"A Universal Grid Map Library: Implementation and Use Case for Rough Terrain Navigation",in Robot Operating System (ROS) – The Complete Reference (Volume 1), A. Koubaa (Ed.), Springer, 2016. (PDF)

    @incollection{Fankhauser2016GridMapLibrary,
    author = {Fankhauser, Péter and Hutter, Marco},
    booktitle = {Robot Operating System (ROS) – The Complete Reference (Volume 1)},
    title = {{A Universal Grid Map Library: Implementation and Use Case for Rough Terrain Navigation}},
    chapter = {5},
    editor = {Koubaa, Anis},
    publisher = {Springer},
    year = {2016},
    isbn = {978-3-319-26052-5},
    doi = {10.1007/978-3-319-26054-9{\_}5},
    url = {http://www.springer.com/de/book/9783319260525}
    }

Documentation

An introduction to the grid map library including a tutorial is given in this book chapter.

The C++ API is documented here:

Installation

Installation from Packages

To install all packages from the grid map library as Debian packages use

sudo apt-get install ros-indigo-grid-map

Building from Source

Dependencies

The grid_map_core package depends only on the linear algebra library Eigen.

sudo apt-get install libeigen3-dev

The grid_map_cv package depends additionally on OpenCV.

The other packages depend additionally on the ROS standard installation (roscpp, tf, filters, sensor_msgs, nav_msgs, and cv_bridge).

Building

To build from source, clone the latest version from this repository into your catkin workspace and compile the package using

cd catkin_ws/src
git clone https://github.com/ethz-asl/grid_map.git
cd ../
catkin_make

To maximize performance, make sure to build in Release mode. You can specify the build type by setting

catkin_make -DCMAKE_BUILD_TYPE=Release

Packages Overview

This repository consists of following packages:

  • grid_map is the meta-package for the grid map library.
  • grid_map_core implements the algorithms of the grid map library. It provides theGridMap class and several helper classes such as the iterators. This package is implemented withoutROS dependencies.
  • grid_map_ros is the main package for ROS dependent projects using the grid map library. It provides the interfaces to convert grid maps from and to severalROS message types.
  • grid_map_cv provides conversions of grid maps from and toOpenCV image types.
  • grid_map_msgs holds the ROS message and service definitions around the [grid_map_msg/GridMap] message type.
  • grid_map_rviz_plugin is an RViz plugin to visualize grid maps as 3d surface plots (height maps).
  • grid_map_visualization contains a node written to convert GridMap messages to otherROS message types for example for visualization inRViz.
  • grid_map_filters builds on the ROS filters package to process grid maps as a sequence of filters.
  • grid_map_demos contains several nodes for demonstration purposes.

Unit Tests

Run the unit tests with

catkin_make run_tests_grid_map_core run_tests_grid_map_ros

or

catkin build grid_map --no-deps --verbose --catkin-make-args run_tests

if you are using catkin tools.

Usage

Demonstrations

The grid_map_demos package contains several demonstration nodes. Use this code to verify your installation of the grid map packages and to get you started with your own usage of the library.

  • simple_demo demonstrates a simple example for using the grid map library. This ROS node creates a grid map, adds data to it, and publishes it. To see the result in RViz, execute the command

    roslaunch grid_map_demos simple_demo.launch
  • tutorial_demo is an extended demonstration of the library's functionalities. Launch thetutorial_demo with

    roslaunch grid_map_demos tutorial_demo.launch
  • iterators_demo showcases the usage of the grid map iterators. Launch it with

    roslaunch grid_map_demos iterators_demo.launch
  • image_to_gridmap_demo demonstrates how to convert data from animage to a grid map. Start the demonstration with

    roslaunch grid_map_demos image_to_gridmap_demo.launch

  • opencv_demo demonstrates map manipulations with help ofOpenCV functions. Start the demonstration with

    roslaunch grid_map_demos opencv_demo.launch

  • resolution_change_demo shows how the resolution of a grid map can be changed with help of theOpenCV image scaling methods. The see the results, use

    roslaunch grid_map_demos resolution_change_demo.launch

Conventions & Definitions

Iterators

The grid map library contains various iterators for convenience.

Grid map Submap Circle Line Polygon
Ellipse Spiral      
     

Using the iterator in a for loop is common. For example, iterate over the entire grid map with theGridMapIterator with

for (grid_map::GridMapIterator iterator(map); !iterator.isPastEnd(); ++iterator) {
cout << "The value at index " << (*iterator).transpose() << " is " << map.at("layer", *iterator) << endl;
}

The other grid map iterators follow the same form. You can find more examples on how to use the different iterators in theiterators_demo node.

Note: For maximum efficiency when using iterators, it is recommended to locally store direct access to the data layers of the grid map withgrid_map::Matrix& data = map["layer"] outside the for loop:

grid_map::Matrix& data = map["layer"];
for (GridMapIterator iterator(map); !iterator.isPastEnd(); ++iterator) {
const Index index(*iterator);
cout << "The value at index " << index.transpose() << " is " << data(index(0), index(1)) << endl;
}

You can find a benchmarking of the performance of the iterators in the iterator_benchmark node of thegrid_map_demos package which can be run with

rosrun grid_map_demos iterator_benchmark

Beware that while iterators are convenient, it is often the cleanest and most efficient to make use of the built-inEigen methods. Here are some examples:

  • Setting a constant value to all cells of a layer:

    map["layer"].setConstant(3.0);
  • Adding two layers:

    map["sum"] = map["layer_1"] + map["layer_2"];
  • Scaling a layer:

    map["layer"] = 2.0 * map["layer"];
  • Max. values between two layers:

    map["max"] = map["layer_1"].cwiseMax(map["layer_2"]);
  • Compute the root mean squared error:

    map.add("error", (map.get("layer_1") - map.get("layer_2")).cwiseAbs());
    unsigned int nCells = map.getSize().prod();
    double rootMeanSquaredError = sqrt((map["error"].array().pow(2).sum()) / nCells);

Changing the Position of the Map

There are two different methods to change the position of the map:

  • setPosition(...): Changes the position of the map without changing data stored in the map. This changes the corresponce between the data and the map frame.
  • move(...): Relocates the grid map such that the corresponce between data and the map frame does not change. Data in the overlapping region before and after the position change remains stored. Data that falls outside of the map at its new position is discarded. Cells that cover previously unknown regions are emptied (set to nan). The data storage is implemented as two-dimensional circular buffer to minimize computational effort.
setPosition(...) move(...)

Packages

grid_map_rviz_plugin

This RViz plugin visualizes a grid map layer as 3d surface plot (height map). A separate layer can be chosen as layer for the color information.

grid_map_visualization

This node subscribes to a topic of type grid_map_msgs/GridMap and publishes messages that can be visualized in RViz. The published topics of the visualizer can be fully configure with a YAML parameter file. Any number of visualizations with different parameters can be added. An example ishere for the configuration file of the tutorial_demo.

Point cloud Vectors Occupancy grid Grid cells

Parameters

  • grid_map_topic (string, default: "/grid_map")

    The name of the grid map topic to be visualized. See below for the description of the visualizers.

Subscribed Topics

Published Topics

The published topics are configured with the YAML parameter file. Possible topics are:

  • point_cloud (sensor_msgs/PointCloud2)

    Shows the grid map as a point cloud. Select which layer to transform as points with thelayer parameter.

    name: elevation
    type: point_cloud
    params:
    layer: elevation
    flat: false # optional
  • flat_point_cloud (sensor_msgs/PointCloud2)

    Shows the grid map as a "flat" point cloud, i.e. with all points at the same heightz. This is convenient to visualize 2d maps or images (or even video streams) inRViz with help of its Color Transformer. The parameter height determines the desiredz-position of the flat point cloud.

    name: flat_grid
    type: flat_point_cloud
    params:
    height: 0.0

    Note: In order to omit points in the flat point cloud from empty/invalid cells, specify the layers which should be checked for validity withsetBasicLayers(...).

  • vectors (visualization_msgs/Marker)

    Visualizes vector data of the grid map as visual markers. Specify the layers which hold thex-, y-, and z-components of the vectors with the layer_prefix parameter. The parameter position_layer defines the layer to be used as start point of the vectors.

    name: surface_normals
    type: vectors
    params:
    layer_prefix: normal_
    position_layer: elevation
    scale: 0.06
    line_width: 0.005
    color: 15600153 # red
  • occupancy_grid (nav_msgs/OccupancyGrid)

    Visualizes a layer of the grid map as occupancy grid. Specify the layer to be visualized with thelayer parameter, and the upper and lower bound with data_min anddata_max.

    name: traversability_grid
    type: occupancy_grid
    params:
    layer: traversability
    data_min: -0.15
    data_max: 0.15
  • grid_cells (nav_msgs/GridCells)

    Visualizes a layer of the grid map as grid cells. Specify the layer to be visualized with thelayer parameter, and the upper and lower bounds with lower_threshold andupper_threshold.

    name: elevation_cells
    type: grid_cells
    params:
    layer: elevation
    lower_threshold: -0.08 # optional, default: -inf
    upper_threshold: 0.08 # optional, default: inf
  • region (visualization_msgs/Marker)

    Shows the boundary of the grid map.

    name: map_region
    type: map_region
    params:
    color: 3289650
    line_width: 0.003

Note: Color values are in RGB form as concatenated integers (for each channel value 0-255). The values can be generated likethis as an example for the color green (red: 0, green: 255, blue: 0).

Build Status

Devel Job Status

  Indigo Jade Kinetic
grid_map
doc

Release Job Status

  Indigo Jade Kinetic
grid_map
grid_map_core
grid_map_ros
grid_map_msgs
grid_map_rviz_plugin
grid_map_visualization
grid_map_filters
grid_map_loader
grid_map_demos

Bugs & Feature Requests

Please report bugs and request features using the Issue Tracker.

ROS_Kinetic_x ROS栅格地图庫 Grid Map Library的更多相关文章

  1. [python] A*算法基于栅格地图的全局路径规划

    # 所有节点的g值并没有初始化为无穷大 # 当两个子节点的f值一样时,程序选择最先搜索到的一个作为父节点加入closed # 对相同数值的不同对待,导致不同版本的A*算法找到等长的不同路径 # 最后c ...

  2. 小豆包的学习之旅:占用概率栅格地图和cost-map

    接下来将制图和定位问题分别进行介绍.这两个问题可以视为SLAM过程中两个相互联系的子问题,但是也可以视为两个单独的问题.虽然说SLAM问题是鸡和蛋的问题,但是在实际处理过程中总是有先后的.为了简化问题 ...

  3. 利用Matlab快速绘制栅格地图

    代码演示 % 基于栅格地图的机器人路径规划算法 % 第1节:利用Matlab快速绘制栅格地图 clc clear close all %% 构建颜色MAP图 cmap = [1 1 1; ... % ...

  4. matlab构建栅格地图绘图思路

    matlab构建栅格地图绘图思路 近来因研究需要,调研并思考了栅格地图的生成方法,暂时总结以备不时之需. 栅格的建立最需要注意栅格粒度的问题,即根据需要调整栅格的边长,目前有两种思路一种是固定栅格边长 ...

  5. Map-making Robots: A Review of the Occupancy Grid Map Algorithm

    栅格地图算法:http://www.ikaros-project.org/articles/2008/gridmaps/

  6. uni-app 地图初用 map

    一.uni-app 地图初用 map 代码如下: <template> <view> <!-- <page-head :title="title" ...

  7. ROS 八叉树地图构建 - 安装 octomap 和 octomap_server 建图包!

    项目要用到八叉树库 Octomap 来构建地图,这里记录下安装.可视化,并启用带颜色的 Octomap 的过程. 一.Apt 安装 Octomap 库 如果你不需要修改源码,可以直接安装编译好的 oc ...

  8. ROS 八叉树地图构建 - 使用 octomap_server 建图过程总结!

    构建语义地图时,最开始用的是 octomap_server,后面换成了 semantic_slam: octomap_generator,不过还是整理下之前的学习笔记. 一.增量构建八叉树地图步骤 为 ...

  9. IOS 使用程序外地图(IOS Map and google Map)

    1.调用IOS6苹果地图 IOS6中实现这个功能需要使用Map Kit中的MKPlaceMark和MKMapItem两个类,因此我们需要在工程中添加MapKit.framework主要代码如下: - ...

随机推荐

  1. python基础面试

     1  请用自己的算法, 按升序合并如下两个list, 并去除重复的元素: list1 = [2, 3, 8, 4, 9, 5, 6]list2 = [5, 6, 10, 17, 11, 2] 答案: ...

  2. error and solve

    1.缺少对应的jar包 出错信息: Multiple markers at this line - The type org.springframework.beans.factory.Aware c ...

  3. sdut 2878 圆圈

    [ 题目描述]现在有一个圆圈, 顺时针标号分别从 0 到 n-1, 每次等概率顺时针走一步或者逆时针走一步,即如果你在 i 号点,你有 1/2 概率走到((i-1)mod n)号点,1/2 概率走到( ...

  4. AtCoder Grand Contest 002 D - Stamp Rally

    Description We have an undirected graph with N vertices and M edges. The vertices are numbered 1 thr ...

  5. 51 nod 1405 树的距离之和

    1405 树的距离之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题   给定一棵无根树,假设它有n个节点,节点编号从1到n, 求任意两点之间的距离(最短路径)之 ...

  6. ●BZOJ 1767 [Ceoi2009]harbingers

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1767 题解: 斜率优化DP,单调栈,二分 定义 DP[i] 表示从 i 节点出发,到达根所花 ...

  7. 浅谈MySQL中优化sql语句查询常用的30种方法

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索 ...

  8. centos7.2中文乱码解决办法

    centos7.2 中文乱码解决办法 1.查看安装中文包: 查看系统是否安装中文语言包 (列出所有可用的公共语言环境的名称,包含有zh_CN) # locale -a |grep "zh_C ...

  9. React 关于组件(界面)更新

    在最近在学 React , 将组件的UI更新稍微整理了一下.根据业务要求,可能会出现如下的技术实现要求:1.更新自己2.更新子组件3.更新兄弟组件4.更新父组件5.父 call 子  function ...

  10. jquery easyui datagrid设置可编辑行的某个列不可编辑

    function onClickRowd(index1, field1) { if (editIndexd != index1) { if (endEditing()) { $('#dg').data ...