R用户的福音︱TensorFlow:TensorFlow的R接口
————————————————————————————————————————————————————————————
Matt︱R语言调用深度学习架构系列引文
R用户的福音︱TensorFlow:TensorFlow的R接口
TensorFlow
TensorFlow™ is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. TensorFlow was originally developed by researchers and engineers working on the Google Brain Team within Google’s Machine Intelligence research organization for the purposes of conducting machine learning and deep neural networks research, but the system is general enough to be applicable in a wide variety of other domains as well.
Using TensorFlow with R
The TensorFlow API is composed of a set of Python modules that enable constructing and executing TensorFlow graphs. The tensorflow package provides access to the complete TensorFlow API from within R. Here’s a simple example of making up some data in two dimensions and then fitting a line to it:
library(tensorflow)
# Create 100 phony x, y data points, y = x * 0.1 + 0.3
x_data <- runif(100, min=0, max=1)
y_data <- x_data * 0.1 + 0.3
# Try to find values for W and b that compute y_data = W * x_data + b
# (We know that W should be 0.1 and b 0.3, but TensorFlow will
# figure that out for us.)
W <- tf$Variable(tf$random_uniform(shape(1L), -1.0, 1.0))
b <- tf$Variable(tf$zeros(shape(1L)))
y <- W * x_data + b
# Minimize the mean squared errors.
loss <- tf$reduce_mean((y - y_data) ^ 2)
optimizer <- tf$train$GradientDescentOptimizer(0.5)
train <- optimizer$minimize(loss)
# Launch the graph and initialize the variables.
sess = tf$Session()
sess$run(tf$initialize_all_variables())
# Fit the line (Learns best fit is W: 0.1, b: 0.3)
for (step in 1:201) {
sess$run(train)
if (step %% 20 == 0)
cat(step, "-", sess$run(W), sess$run(b), "\n")
}
The first part of this code builds the data flow graph. TensorFlow does not actually run any computation until the session is created and the run
function is called.
MNIST Tutorials
To whet your appetite further, we suggest you check out what a classical machine learning problem looks like in TensorFlow. In the land of neural networks the most “classic” classical problem is the MNIST handwritten digit classification. We offer two introductions here, one for machine learning newbies, and one for pros. If you’ve already trained dozens of MNIST models in other software packages, please take the red pill. If you’ve never even heard of MNIST, definitely take the blue pill. If you’re somewhere in between, we suggest skimming blue, then red.
Images licensed CC BY-SA 4.0; original by W. Carter
If you’re already sure you want to learn and install TensorFlow you can skip these and charge ahead. Don’t worry, you’ll still get to see MNIST – we’ll also use MNIST as an example in our technical tutorial where we elaborate on TensorFlow features.
Download and Setup
Installing TensorFlow
You can install the main TensorFlow distribution from here:
https://www.tensorflow.org/get_started/os_setup.html#download-and-setup
NOTE: You should NOT install TensorFlow with Anaconda as there are issues with the way Anaconda builds the python shared library that prevent dynamic linking from R.
If you install TensorFlow within a Virtualenv environment you’ll need to be sure to use that same environment when installing the tensorflow R package (see below for details).
Installing the R Package
If you installed TensorFlow via pip with your system default version of python then you can install the tensorflow R package as follows:
devtools::install_github("rstudio/tensorflow")
If you are using a different version of python for TensorFlow, you should set the TENSORFLOW_PYTHON
environment variable to the full path of the python binary before installing, for example:
Sys.setenv(TENSORFLOW_PYTHON="/usr/local/bin/python")
devtools::install_github("rstudio/tensorflow")
If you only need to customize the version of python used (for example specifing python 3 on an Ubuntu system), you can set theTENSORFLOW_PYTHON_VERSION
environment variable before installation:
Sys.setenv(TENSORFLOW_PYTHON_VERSION = 3)
devtools::install_github("rstudio/tensorflow")
Verifying Installation
You can verify that your installation is working correctly by running this script:
library(tensorflow)
sess = tf$Session()
hello <- tf$constant('Hello, TensorFlow!')
sess$run(hello)
RStudio IDE
The tensorflow package provides code completion and inline help for the TensorFlow API when running within the RStudio IDE. In order to take advantage of these features you should also install the current Preview Release of RStudio.
Recommended Next Steps
Once you’ve installed the base TensorFlow system and the tensorflow R package, you will likely want work though the series of tutorials that cover TensorFlow basics:
These articles cover the core concepts of TensorFlow in more depth as well describe the details of using the TensorFlow API from R:
These articles provide more in depth treatments of various topics:
- Variables: Creation, Initialization, Saving, and Loading
- TensorFlow Mechanics 101
- TensorBoard: Visualizing Learning
- TensorBoard: Graph Visualization
Finally, to learn more about neural networks you might enjoy the TensorFlow playground, which lets you tinker with a neural network in your browser.
R用户的福音︱TensorFlow:TensorFlow的R接口的更多相关文章
- R语言︱H2o深度学习的一些R语言实践——H2o包
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言H2o包的几个应用案例 笔者寄语:受启发 ...
- 社交网络分析的 R 基础:(一)初探 R 语言
写在前面 3 年的硕士生涯一转眼就过去了,和社交网络也打了很长时间交道.最近突然想给自己挖个坑,想给这 3 年写个总结,画上一个句号.回想当时学习 R 语言时也是非常戏剧性的,开始科研生活时到处发邮件 ...
- R语言编程艺术(5)R语言编程进阶
本文对应<R语言编程艺术> 第14章:性能提升:速度和内存: 第15章:R与其他语言的接口: 第16章:R语言并行计算 ================================== ...
- 编译 TensorFlow 的 C/C++ 接口
TensorFlow 的 Python 接口由于其方便性和实用性而大受欢迎,但实际应用中我们可能还需要其它编程语言的接口,本文将介绍如何编译 TensorFlow 的 C/C++ 接口. 安装环境: ...
- 在R中使用Keras和TensorFlow构建深度学习模型
一.以TensorFlow为后端的Keras框架安装 #首先在ubuntu16.04中运行以下代码 sudo apt-get install libcurl4-openssl-dev libssl-d ...
- R 语言学习笔记(1)——R 工作空间与输入输出
什么是工作空间? 工作空间(workspace)就是当前 R 的工作环境,它储存着所有用户定义的对象(objectives)包括了向量.矩阵.函数.数据框.列表等. 处理 R 文件的工作流程 #设置当 ...
- R语言学习之主成分分析法的R实践
主成分分析R软件实现程序(一): >d=read.table("clipboard",header=T) #从剪贴板读取数据 >sd=scale(d) #对数据进行标 ...
- R.layout.main connot be resolved 和R.java消失
出现例如以下问题: 鼠标放到出代码上面: 分析问题: 1.查看R文件是否被生成.假设没有生成,则勾选build Automatically,然后Clean: 2.假设R文件已生成.则删除去掉代码中: ...
- R语言︱情感分析—基于监督算法R语言实现(二)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:本文大多内容来自未出版的<数据 ...
随机推荐
- SpringBoot整合Redis、ApachSolr和SpringSession
SpringBoot整合Redis.ApachSolr和SpringSession 一.简介 SpringBoot自从问世以来,以其方便的配置受到了广大开发者的青睐.它提供了各种starter简化很多 ...
- ftp服务配置
文件传输协议(File Transfer Protocol,FTP),基于该协议FTP客户端与服务端可以实现共享文件.上传文件.下载文件. FTP 基于TCP协议生成一个虚拟的连接,主要用于控制F ...
- SpringMVC解决跨域问题
有个朋友在写扇贝插件的时候遇到了跨域问题. 于是我对解决跨域问题的方式进行了一番探讨. 问题 API:查询单词 URL: https://api.shanbay.com/bdc/search/?wor ...
- PHPSTUDY下升级mysql后无法启动
说来也是搞笑,之前很早就想看Laravel了~其中,之前项目忙,还有就是自己也出了点事故!但是呢,我个人哭过,抱怨过,但是我还是很懂我自己的.也许没心没肺也是一种好事,但也是坏事~ 闲话说多了,来说正 ...
- 关于document.body.scrollTop与documentElement.scrollTop
遇到document.body.scrollTop值为0的问题 今天在写一个小demo的时候,使用滚动条,我用document.body.scrollTop获取滚动条的位置,但是很奇怪的发现在谷歌上获 ...
- BZOJ 2142: 礼物 [Lucas定理]
2142: 礼物 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1294 Solved: 534[Submit][Status][Discuss] ...
- Linux C 一个简单的线程池程序设计
最近在学习linux下的编程,刚开始接触感觉有点复杂,今天把线程里比较重要的线程池程序重新理解梳理一下. 实现功能:创建一个线程池,该线程池包含若干个线程,以及一个任务队列,当有新的任务出现时,如果任 ...
- Markdown 安装图解(破解汉化教程)
http://blog.csdn.net/taokai_110/article/details/72934818 终于解决了问题
- 使用Dism备份和全新恢复系统
1.使用WinPE启动,winPE制作可以参考我的另一文章http://www.cnblogs.com/karl-F/p/6934086.html 2.捕获C盘镜像 (1)查看磁盘 在PE提示符:输入 ...
- cloud9 ide
https://github.com/tekacs/cloud9 http://www.pjhome.net/article/Javascript/nodeJS_IDE_cloud9.html htt ...