topcoder srm 711 div1 -3
1、给出$n,k$,求一个大于等于$n$且最小的数字$m$使得$m$的二进制表示中存在连续$k$个1 。
思路:如果$n$满足,答案就是$n$。否则,依次枚举连续1的位置判断即可。
#include <iostream>
#include <set>
#include <stdio.h>
#include <queue>
#include <algorithm>
#include <string.h>
using namespace std; class ConsecutiveOnes
{
public:
long long get(long long n,int k) { const int N=50; int a[N+5];
a[0]=0;
for(int i=1;i<=N;++i)
{
a[i]=(n>>(i-1))&1;
a[i]+=a[i-1];
}
for(int i=k;i<=N;++i) if(a[i]-a[i-k]==k) return n;
long long ans=((n>>k)<<k)|((1ll<<k)-1);
long long tmp=ans;
for(int i=k;i<N;++i)
{
if((tmp>>(i-k))&1) tmp^=1ll<<(i-k);
tmp|=1ll<<i;
if(tmp>=n&&tmp<ans) ans=tmp;
}
return ans;
}
};
2、给出一个整数$X=\prod_{i=0}^{n-1}p_{i}^{a_{i}}$,其中$p_{i}$表示第i个素数,比如$p_{0}=2,p_{1}=3$。问有多少有序数列使得数列中每个数字大于1且所有数字的乘积等于$X$。当$X=6$时有三个,分别是{2,3},{3,2},{6}。其中$1\leq n \leq 50,1\leq a_{i} \leq 50$。
思路:令$f_{i}$表示将$X$表示成$i$个数乘积的方案数。那么$f_{i}=\prod_{k=0}^{n-1}g(a_{k},i)-\sum_{k=1}^{i-1}C_{i}^{k}f_{k}$。其中$g(i,j)$表示将$i$个苹果放在$j$个篮子里的方案数,$C_{i}^{j}$表示组合数。
那么答案$ans=\sum f_{i}$
#include <iostream>
#include <map>
#include <string>
#include <stdio.h>
#include <vector>
#include <set>
#include <algorithm>
#include <string.h>
#include <queue>
using namespace std; const int N=3005;
const int mod=1000000007; int C[N][N]; int add(int x,int y) {
x+=y;
if(x>=mod) x-=mod;
return x;
} void init()
{
C[0][0]=1;
for(int i=1;i<N;++i) {
C[i][0]=1;
for(int j=1;j<N;++j) {
C[i][j]=add(C[i-1][j],C[i-1][j-1]);
}
}
} int calC(int a,int b) {
if(a<b) return 0;
if(b+b>a) b=a-b;
return C[a][b];
} int cal1(int a,int b) {
return calC(a+b-1,b-1);
} int dp[N]; struct OrderedProduct {
int count(vector<int> a)
{
init();
int s=0;
const int n=(int)a.size();
for(int i=0;i<n;++i) s+=a[i];
int ans=0;
for(int i=1;i<=s;++i) {
dp[i]=1;
for(int j=0;j<n;++j) dp[i]=(long long)dp[i]*cal1(a[j],i)%mod;
for(int j=1;j<i;++j) dp[i]=add(dp[i],mod-(long long)calC(i,j)*dp[j]%mod);
ans=add(ans,dp[i]);
}
return ans;
}
};
topcoder srm 711 div1 -3的更多相关文章
- Topcoder SRM 643 Div1 250<peter_pan>
Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...
- Topcoder Srm 726 Div1 Hard
Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结 ...
- topcoder srm 714 div1
problem1 link 倒着想.每次添加一个右括号再添加一个左括号,直到还原.那么每次的右括号的选择范围为当前左括号后面的右括号减去后面已经使用的右括号. problem2 link 令$h(x) ...
- topcoder srm 738 div1 FindThePerfectTriangle(枚举)
Problem Statement You are given the ints perimeter and area. Your task is to find a triangle wi ...
- Topcoder SRM 602 div1题解
打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加 ...
- Topcoder SRM 627 div1 HappyLettersDiv1 : 字符串
Problem Statement The Happy Letter game is played as follows: At the beginning, several players ...
- Topcoder SRM 584 DIV1 600
思路太繁琐了 ,实在不想解释了 代码: #include<iostream> #include<cstdio> #include<string> #include& ...
- TopCoder SRM 605 DIV1
604的题解还没有写出来呢.先上605的. 代码去practice房间找. 说思路. A: 贪心,对于每个类型的正值求和,如果没有正值就取最大值,按着求出的值排序,枚举选多少个类型. B: 很明显是d ...
- topcoder srm 575 div1
problem1 link 如果$k$是先手必胜那么$f(k)=1$否则$f(k)=0$ 通过对前面小的数字的计算可以发现:(1)$f(2k+1)=0$,(2)$f(2^{2k+1})=0$,(3)其 ...
随机推荐
- Spark实战记录
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~PipelineExample winutils.exe java.lang.NullPointException~~~~~~~~~~~~~ ...
- Unity shader学习之渐变纹理
渐变纹理,及使用纹理来存储漫反射光照的结果,这种技术在游戏<军团要塞2>中流行起来,它也是由Valve公司(提出半兰伯特光照技术的公司)提出来的,他们使用这种技术来渲染游戏中具有插画风格的 ...
- linux基本格式和常用目录命令一
1: cd 绝对路径 2: cd 相对路径 名字开头 ./开头 ../开头 3: cd ~: 去到当前用户所在目录; 4: pwd获取当前的路径的绝对路径; 5: ls 与ls -l 6: cat 操 ...
- 数据分析之Numpy库入门
1.列表与数组 在python的基础语言部分,我们并没有介绍数组类型,但是像C.Java等语言都是有数组类型的,那python中的列表和数组有何区别呢? 一维数据:都表示一组数据的有序结构 区别: 列 ...
- poj1741 树上的分治
题意是说给了n个点的树n<=10000,问有多少个点对例如(a,b)他们的之间的距离小于等于k 采用树的分治做 #include <iostream> #include <cs ...
- 如何在Sitecore CMS中打开内容编辑器
在Sitecore中开发网站时,大多数项目管理都来自内容编辑器.创建,删除,修改,移动,发布,排序和查看项目只是可以在Content Editor界面中处理的众多任务中的一小部分. 由于内容编辑器对于 ...
- MQTT 发布者订阅者
添加依赖: <dependency> <groupId>org.eclipse.paho</groupId> <artifactId>org.eclip ...
- activemq消息队列的使用及应用docker部署常见问题及注意事项
activemq消息队列的使用及应用docker部署常见问题及注意事项 docker用https://hub.docker.com/r/rmohr/activemq/配置在/data/docker/a ...
- ESXi 嵌套KVM虚拟化 配置
VMware ESXi5.x默认不支持嵌套虚拟化,需要修改相关配置才能支持 1.ESXi5.1主机开通ssh,修改VMware ESXi配置文件使之嵌套虚拟化. 在配置文件后面加入如下配置:vhv ...
- 如何获取STM32 MCU的唯一ID及应用(转)
源: 如何获取STM32 MCU的唯一ID