优化器可以通俗的理解成梯度下降那一套流程。

梯度下降

基本流程

a. 损失函数

b. 求导,计算梯度

c. 更新参数

d. 迭代下一批样本

可以对照着理解tf。

tf 优化器

正常使用流程

a. 创建优化器(也就是选择优化方法,只是选择方法,其他什么也没做)

b. 指定损失函数和可优化参数

c. minimize最小化损失函数,这步包含两个操作,首先计算梯度,然后更新参数

以tf基本优化器,也就是梯度下降为例

optimizer = tf.train.GradientDescentOptimizer(learning_rate)      # 优化器
global_step = tf.Variable(0, name='global_step', trainable=False)  # 记录全局训练步骤
train_op = optimizer.minimize(loss, global_step=global_step)     # 最小化损失函数,包括计算梯度,更新参数,记录训练次数

注意tf中学习率可以是tensor, 也就是说它可被feed。

tf 人工实现梯度下降

a. 计算梯度

b. 人工处理梯度

c. 优化参数

也就是把minimize拆开

# 创建一个optimizer.
opt = GradientDescentOptimizer(learning_rate=0.1) # 计算<list of variables>相关的梯度
grads_and_vars = opt.compute_gradients(loss, <list of variables>)
# grads_and_vars为tuples (gradient, variable)组成的列表。
#对梯度进行想要的处理,比如cap处理
capped_grads_and_vars = [(MyCapper(gv[0]), gv[1]) for gv in grads_and_vars] # 令optimizer运用capped的梯度(gradients)
opt.apply_gradients(capped_grads_and_vars)

优化器API详解

API 描述
tf.train.Optimizer

tf中优化器是个家族,Optimizer是个基类,一般不用

用的是它的子类

GradientDescentOptimizer, AdagradOptimizer,MomentumOptimizer等等

tf.train.Optimizer.__init__(use_locking, name)  初始化

tf.train.Optimizer.minimize(loss,

global_step=None,

var_list=None,

gate_gradients=1,

aggregation_method=None, colocate_gradients_with_ops=False,

name=None, grad_loss=None)

最小化损失函数,返回更新后的参数列表

global_step 为迭代次数,如果不为None,它的值会自增

var_list 为参数列表,

此步包含计算梯度和更新参数两步,也就是下面两个API

tf.train.Optimizer.compute_gradients(loss,

var_list=None,

gate_gradients=1, aggregation_method=None,

colocate_gradients_with_ops=False, grad_loss=None)

计算梯度,只是求导,没做其他的,返回(梯度,变量)的tuples

loss是损失函数

var_list 是参数列表,基于loss对这些参数求导

其他版本 tf.gradients

tf.train.Optimizer.apply_gradients(grads_and_vars,

global_step=None,

name=None)

将梯度应用到变量上,更新参数,

返回一个应用指定梯度的操作Operation,并对global_step做自增操作

tf.train.Optimizer.get_name()  获取名称

并发性参数

调试函数(高级API)

子类优化器

tf.train.GradientDescentOptimizer    梯度下降

tf.train.MomentumOptimizer        动量梯度下降

tf.train.AdadeltaOptimizer

tf.train.AdagradOptimizer

tf.train.AdamOptimizer

tf.train.FtrlOptimizer

tf.train.RMSPropOptimizer

参考资料

http://www.cnblogs.com/hellcat/p/7041433.html

http://www.360doc.com/content/18/0505/10/54605916_751286822.shtml

https://www.cnblogs.com/wuzhitj/p/6648641.html

https://blog.csdn.net/hustqb/article/details/80302726

tensorflow-优化器的更多相关文章

  1. TensorFlow从0到1之TensorFlow优化器(13)

    高中数学学过,函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系数.本节将介绍如何使 ...

  2. TensorFlow优化器及用法

    TensorFlow优化器及用法 函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系 ...

  3. tensorflow优化器-【老鱼学tensorflow】

    tensorflow中的优化器主要是各种求解方程的方法,我们知道求解非线性方程有各种方法,比如二分法.牛顿法.割线法等,类似的,tensorflow中的优化器也只是在求解方程时的各种方法. 比较常用的 ...

  4. TensorFlow优化器浅析

    本文基于tensorflow-v1.15分支,简单分析下TensorFlow中的优化器. optimizer = tf.train.GradientDescentOptimizer(learning_ ...

  5. DNN网络(三)python下用Tensorflow实现DNN网络以及Adagrad优化器

    摘自: https://www.kaggle.com/zoupet/neural-network-model-for-house-prices-tensorflow 一.实现功能简介: 本文摘自Kag ...

  6. Tensorflow 中的优化器解析

    Tensorflow:1.6.0 优化器(reference:https://blog.csdn.net/weixin_40170902/article/details/80092628) I:  t ...

  7. tensorflow的几种优化器

    最近自己用CNN跑了下MINIST,准确率很低(迭代过程中),跑了几个epoch,我就直接stop了,感觉哪有问题,随即排查了下,同时查阅了网上其他人的blog,并没有发现什么问题 之后copy了一篇 ...

  8. 莫烦大大TensorFlow学习笔记(8)----优化器

    一.TensorFlow中的优化器 tf.train.GradientDescentOptimizer:梯度下降算法 tf.train.AdadeltaOptimizer tf.train.Adagr ...

  9. TensorFlow使用记录 (六): 优化器

    0. tf.train.Optimizer tensorflow 里提供了丰富的优化器,这些优化器都继承与 Optimizer 这个类.class Optimizer 有一些方法,这里简单介绍下: 0 ...

  10. Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理

    前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只 ...

随机推荐

  1. Centos6.8 smokeping安装

    yum -y install rrdtool perl-rrdtool curl perl-core bind bind-chroot bind-utils httpd popt popt-devel ...

  2. C# ftp 上传、下载、删除

    public class FtpHelper { public static readonly FtpHelper Instance = new FtpHelper(); /// <summar ...

  3. 一‘php文件系统

    一.获取文件信息 ——FILE——,获取当前文件的绝对路径,包含文件名, __DIR__等价于dirname(__FILE__),不包含文件名的路径,

  4. html 巧用data-for藏自定义属性

    <div class="form-ele"> <label for="week" class="label col-1"& ...

  5. SIMD指令集——一条指令操作多个数,SSE,AVX都是,例如:乘累加,Shuffle等

    SIMD指令集 from:https://zhuanlan.zhihu.com/p/31271788 SIMD,即Single Instruction, Multiple Data,一条指令操作多个数 ...

  6. 整合Spring Security(二十七)

    在这一节,我们将对/hello页面进行权限控制,必须是授权用户才能访问.当没有权限的用户访问后,跳转到登录页面. 添加依赖 在pom.xml中添加如下配置,引入对Spring Security的依赖. ...

  7. Spring @Scheduled @Async联合实现调度任务(2017.11.28更新)

    定时任务之前一直用的是quartz之类,但是注意到Spring中其实也提供了一种简单的调度注释@Scheduled,也就想尝一下鲜.. 代码示意如下: @Component @EnableSchedu ...

  8. ubuntu下的网速限制软件wondershaper (2011-09-18 00:00:00)转载▼

    上网或下载的时候我们常常希望网速快一点,但有时我们也需要限制网速,在ubuntu系统下,可以使用wondershaper,不仅可以限制下载速度还可以限制上传速度. 安装好之后,需要使用终端取得管理员权 ...

  9. 在shell脚本里执行sudo 命令

      可以 : echo "yourpasswd" |sudo -S yourcommand 但是不安全,因为密码都显示在shell脚本里面了-_- 引自http://hi.baid ...

  10. Linux安装Nginx报错: ./configure: error: C compiler cc is not found

    CentOS 7.3 下 安装 Nginx 执行配置命令 ./configure 时提示以下错误: checking for OS + Linux 2.6.32-431.el6.x86_64 x86_ ...