tensorflow-优化器
优化器可以通俗的理解成梯度下降那一套流程。
梯度下降
基本流程
a. 损失函数
b. 求导,计算梯度
c. 更新参数
d. 迭代下一批样本
可以对照着理解tf。
tf 优化器
正常使用流程
a. 创建优化器(也就是选择优化方法,只是选择方法,其他什么也没做)
b. 指定损失函数和可优化参数
c. minimize最小化损失函数,这步包含两个操作,首先计算梯度,然后更新参数
以tf基本优化器,也就是梯度下降为例
optimizer = tf.train.GradientDescentOptimizer(learning_rate) # 优化器
global_step = tf.Variable(0, name='global_step', trainable=False) # 记录全局训练步骤
train_op = optimizer.minimize(loss, global_step=global_step) # 最小化损失函数,包括计算梯度,更新参数,记录训练次数
注意tf中学习率可以是tensor, 也就是说它可被feed。
tf 人工实现梯度下降
a. 计算梯度
b. 人工处理梯度
c. 优化参数
也就是把minimize拆开
# 创建一个optimizer.
opt = GradientDescentOptimizer(learning_rate=0.1) # 计算<list of variables>相关的梯度
grads_and_vars = opt.compute_gradients(loss, <list of variables>)
# grads_and_vars为tuples (gradient, variable)组成的列表。
#对梯度进行想要的处理,比如cap处理
capped_grads_and_vars = [(MyCapper(gv[0]), gv[1]) for gv in grads_and_vars] # 令optimizer运用capped的梯度(gradients)
opt.apply_gradients(capped_grads_and_vars)
优化器API详解
API | 描述 |
tf.train.Optimizer |
tf中优化器是个家族,Optimizer是个基类,一般不用 用的是它的子类 GradientDescentOptimizer, AdagradOptimizer,MomentumOptimizer等等 |
tf.train.Optimizer.__init__(use_locking, name) | 初始化 |
tf.train.Optimizer.minimize(loss, global_step=None, var_list=None, gate_gradients=1, aggregation_method=None, colocate_gradients_with_ops=False, name=None, grad_loss=None) |
最小化损失函数,返回更新后的参数列表 global_step 为迭代次数,如果不为None,它的值会自增 var_list 为参数列表, 此步包含计算梯度和更新参数两步,也就是下面两个API |
tf.train.Optimizer.compute_gradients(loss, var_list=None, gate_gradients=1, aggregation_method=None, colocate_gradients_with_ops=False, grad_loss=None) |
计算梯度,只是求导,没做其他的,返回(梯度,变量)的tuples loss是损失函数 var_list 是参数列表,基于loss对这些参数求导 其他版本 tf.gradients |
tf.train.Optimizer.apply_gradients(grads_and_vars, global_step=None, name=None) |
将梯度应用到变量上,更新参数, 返回一个应用指定梯度的操作Operation,并对global_step做自增操作 |
tf.train.Optimizer.get_name() | 获取名称 |
并发性参数
调试函数(高级API)
子类优化器
tf.train.GradientDescentOptimizer 梯度下降
tf.train.MomentumOptimizer 动量梯度下降
tf.train.AdadeltaOptimizer
tf.train.AdagradOptimizer
tf.train.AdamOptimizer
tf.train.FtrlOptimizer
tf.train.RMSPropOptimizer
参考资料
http://www.cnblogs.com/hellcat/p/7041433.html
http://www.360doc.com/content/18/0505/10/54605916_751286822.shtml
https://www.cnblogs.com/wuzhitj/p/6648641.html
https://blog.csdn.net/hustqb/article/details/80302726
tensorflow-优化器的更多相关文章
- TensorFlow从0到1之TensorFlow优化器(13)
高中数学学过,函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系数.本节将介绍如何使 ...
- TensorFlow优化器及用法
TensorFlow优化器及用法 函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系 ...
- tensorflow优化器-【老鱼学tensorflow】
tensorflow中的优化器主要是各种求解方程的方法,我们知道求解非线性方程有各种方法,比如二分法.牛顿法.割线法等,类似的,tensorflow中的优化器也只是在求解方程时的各种方法. 比较常用的 ...
- TensorFlow优化器浅析
本文基于tensorflow-v1.15分支,简单分析下TensorFlow中的优化器. optimizer = tf.train.GradientDescentOptimizer(learning_ ...
- DNN网络(三)python下用Tensorflow实现DNN网络以及Adagrad优化器
摘自: https://www.kaggle.com/zoupet/neural-network-model-for-house-prices-tensorflow 一.实现功能简介: 本文摘自Kag ...
- Tensorflow 中的优化器解析
Tensorflow:1.6.0 优化器(reference:https://blog.csdn.net/weixin_40170902/article/details/80092628) I: t ...
- tensorflow的几种优化器
最近自己用CNN跑了下MINIST,准确率很低(迭代过程中),跑了几个epoch,我就直接stop了,感觉哪有问题,随即排查了下,同时查阅了网上其他人的blog,并没有发现什么问题 之后copy了一篇 ...
- 莫烦大大TensorFlow学习笔记(8)----优化器
一.TensorFlow中的优化器 tf.train.GradientDescentOptimizer:梯度下降算法 tf.train.AdadeltaOptimizer tf.train.Adagr ...
- TensorFlow使用记录 (六): 优化器
0. tf.train.Optimizer tensorflow 里提供了丰富的优化器,这些优化器都继承与 Optimizer 这个类.class Optimizer 有一些方法,这里简单介绍下: 0 ...
- Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只 ...
随机推荐
- Jumpserver3.0部署(Centos6.x)
1.jumpserver基础环境准备[root@jumpserver ~]# yum -y install epel-release[root@jumpserver ~]# yum clean all ...
- LeetCode--443--压缩字符串(未看)
问题描述: 给定一组字符,使用原地算法将其压缩. 压缩后的长度必须始终小于或等于原数组长度. 数组的每个元素应该是长度为1 的字符(不是 int 整数类型). 在完成原地修改输入数组后,返回数组的新长 ...
- 在Java、Web和移动开发方面最值得关注的12大开源框架
在这篇文章中,我将分享一些值得开发者学习的优秀框架,以提高他们在移动开发.Web 开发以及大数据方面的开发技能. 1.AngularJS 这是一个JavaScript框架,我已经把它加入到我的2018 ...
- Dynamic Shortest Path CodeForces - 843D (动态最短路)
大意: n结点有向有权图, m个操作, 增加若干边的权重或询问源点为1的单源最短路. 本题一个特殊点在于每次只增加边权, 并且边权增加值很小, 询问量也很小. 我们可以用johnson的思想, 转化为 ...
- 使用scp上传和下载文件
利用scp传输文件 1.从服务器下载文件 scp username@servername:/path/filename /tmp/local_destination 例如scp codinglog@1 ...
- 笔记react router 4(四)
看完Router的变化,接着来说<Switch>组件. 在3.X中,你可以指定很多子路由,但是只有第一个匹配的路径才会被渲染. 就像这样, <Route path='/' compo ...
- mysql创建存储过程,批量建表分表00到99
这里以sqlyong为软件示例: --创建存储过程DELIMITER $$ CREATE PROCEDURE `createTablesWithIndex`() BEGIN DECLARE `@i` ...
- javaweb项目静态资源被拦截的解决方法
<servlet-mapping> <servlet-name>springMvc</servlet-name> <url-pattern>/*< ...
- P2756 飞行员配对方案问题
题目背景 第二次世界大战时期.. 题目描述 英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架飞机都需要配备在航行技能和语言上能互相配合的2 名飞行员,其中1 名是英国飞行员,另1名是外 ...
- F - Proud Merchants
Recently, iSea went to an ancient country. For such a long time, it was the most wealthy and powerfu ...