一、Model representation(模型表示)

1.1 训练集

由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y)是一个训练样例, (x(i),y(i))是第 i个训练样例.

1.2 假设函数

使用某种学习算法对训练集的数据进行训练, 我们可以得到假设函数(Hypothesis Function), 如下图所示. 在房价的例子中,假设函数就是一个房价关于房子面积的函数。有了这个假设函数之后, 给定一个房子的面积我们就可以预测它的价格了.

  Hypothesis这个词或许在这里不是很恰当。但这是机器学习中使用的标准术语.

以上这个模型就叫做单变量的线性回归(Linear Regression with One Variable). (Linear regression with one variable = Univariate linear regression,univariate是one variable的装逼写法.)

二、Cost Function(代价函数)

2.1 什么是代价函数

只要我们知道了假设函数, 我们就可以进行预测了. 关键是, 假设函数中有两个未知的量θ0,θ1. 当选择不同的θ0和θ1时, 我们模型的效果肯定是不一样的.

如下图所示, 列举了三种不同的θ0和θ1下的假设函数.

(其中的1/2只是为了后面计算的方便)我们记:

这样就得到了我们的代价函数(cost function), 也就是我们的优化目标, 我们想要代价函数最小:

代价函数也被称为平方误差函数(Squared error function)

2.2 代价函数与假设函数

2.2 代价函数与假设函数II

类似地:

我们不断尝试直到找到一个最佳的hθ(x)hθ(x)。是否有特定的算法能帮助我们找到最佳的hθ(x)hθ(x)呢?

下面我们就要介绍这个算法-梯度下降算法.

三. 梯度下降算法

3.1 梯度下降

可以把梯度下降的过程想象成下山坡, 如果想要尽可能快的下坡, 应该每次都往坡度最大的方向下山.

梯度下降算法得到的结果会受到初始状态的影响, 即当从不同的点开始时, 可能到达不同的局部极小值, 如下图:

3.2 梯度和学习率

我们先来看看梯度下降算法的梯度是如何帮助我们找到最优解的. 为了研究问题的方便我们还是同样地令θ0θ0等于0,假设一开始选取的θ1θ1在最低点的右侧,此时的梯度(斜率)是一个正数。根据上面的算法更新θ1θ1的时候,它的值会减小, 即靠近最低点。

类似地假设一开始选取的θ1θ1在最低点的左侧,此时的梯度是一个负数,根据上面的算法更新θ1θ1的时候,它的值会增大,也会靠近最低点.

如果一开始选取的θ1θ1恰好在最适位置,那么更新θ1θ1时,它的值不会发生变化。

学习率α会影响梯度下降的幅度。如果α太小, θ的值每次会变化的很小,那么梯度下降就会非常慢;相反地,如果α过大,θ的值每次会变化会很大,有可能直接越过最低点,可能导致永远没法到达最低点。

由于随着越来越接近最低点, 相应的梯度(绝对值)也会逐渐减小,所以每次下降程度就会越来越小, 我们并不需要减小αα的值来减小下降程度。

3.3 计算梯度

根据定义, 梯度也就是代价函数对每个θ的偏导:

由此得到了完整的梯度下降算法:

还记得这个图吗, 前面说了梯度下降算法得到的结果会受初始状态的影响, 即初始状态不同, 结果可能是不同的局部最低点.

事实上,用于线性回归的代价函数总是一个凸函数(Convex Function)。这样的函数没有局部最优解,只有一个全局最优解。所以我们在使用梯度下降的时候,总会得到一个全局最优解。

下面我们来看一下梯度下降的运行过程:

迭代多次后,我们得到了最优解。现在我们可以用最优解对应的假设函数来对房价进行预测了。例如一个1,250平方英尺的房子大概能卖到250k$,如下图所示:

Machine Learning 学习笔记2 - linear regression with one variable(单变量线性回归)的更多相关文章

  1. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 2_Linear regression with one variable 单变量线性回归

    Lecture2   Linear regression with one variable  单变量线性回归 2.1 模型表示 Model Representation 2.1.1  线性回归 Li ...

  2. 【原】Coursera—Andrew Ng机器学习—Week 1 习题—Linear Regression with One Variable 单变量线性回归

    Question 1 Consider the problem of predicting how well a student does in her second year of college/ ...

  3. [Machine Learning]学习笔记-Logistic Regression

    [Machine Learning]学习笔记-Logistic Regression 模型-二分类任务 Logistic regression,亦称logtic regression,翻译为" ...

  4. Machine Learning 学习笔记

    点击标题可转到相关博客. 博客专栏:机器学习 PDF 文档下载地址:Machine Learning 学习笔记 机器学习 scikit-learn 图谱 人脸表情识别常用的几个数据库 机器学习 F1- ...

  5. machine learning(14) --Regularization:Regularized linear regression

    machine learning(13) --Regularization:Regularized linear regression Gradient descent without regular ...

  6. 机器学习笔记1——Linear Regression with One Variable

    Linear Regression with One Variable Model Representation Recall that in *regression problems*, we ar ...

  7. Machine Learning 学习笔记1 - 基本概念以及各分类

    What is machine learning? 并没有广泛认可的定义来准确定义机器学习.以下定义均为译文,若以后有时间,将补充原英文...... 定义1.来自Arthur Samuel(上世纪50 ...

  8. [Python & Machine Learning] 学习笔记之scikit-learn机器学习库

    1. scikit-learn介绍 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上.值得一提的是,scikit-learn最 ...

  9. Coursera 机器学习 第6章(上) Advice for Applying Machine Learning 学习笔记

    这章的内容对于设计分析假设性能有很大的帮助,如果运用的好,将会节省实验者大量时间. Machine Learning System Design6.1 Evaluating a Learning Al ...

随机推荐

  1. resolution will not be reattempted until the update interval of repository-group has elapsed or updates are forced

    Failed to execute goal on project safetan-web: Could not resolve dependencies for project com.safeta ...

  2. pygame中多个class类之间的关系

    用一个实例介绍一下有关pygame中不同类之间的通信,详细介绍在代码段有标注,感兴趣的可以复制代码试试: import pygame import sys # -------------------- ...

  3. window.location详解

    window.location对象常用属性 location.hostname 返回 web 主机的域名 location.host 返回 web 主机的域名(包含端口) location.pathn ...

  4. D - 文理分科 HYSBZ - 3894(最小割)

    题目链接:https://cn.vjudge.net/contest/281959#problem/D 题目大意:中文题目 具体思路: 首先说一下最小割:在最小代价的前提下,删除一些边之后,能够使得整 ...

  5. Mybatis进阶学习笔记——动态代理方式开发Dao接口、Dao层(推荐第二种)

    1.原始方法开发Dao Dao接口 package cn.sm1234.dao; import java.util.List; import cn.sm1234.domain.Customer; pu ...

  6. Linux Makefile 编译速度的优化【转】

    转自:https://blog.csdn.net/QQ1452008/article/details/51851801 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog. ...

  7. Linux下函数调用堆栈帧的详细解释【转】

    转自:http://blog.chinaunix.net/uid-30339363-id-5116170.html 原文地址:Linux下函数调用堆栈帧的详细解释 作者:cssjtuer http:/ ...

  8. kafka系列九、kafka事务原理、事务API和使用场景

    一.事务场景 最简单的需求是producer发的多条消息组成一个事务这些消息需要对consumer同时可见或者同时不可见 . producer可能会给多个topic,多个partition发消息,这些 ...

  9. jvm系列六、windows用jdk自带工具jps、jstack找出性能最差的代码

    一.运行程序TestGC 二.用jps找出当前应用的进程号PID 到jdk安装目录的bin目录下输入: jps -l PID为1264 三.启动Process Explorer(下载地址:https: ...

  10. Ajax jsonp 跨域请求实例

    跨域请求 JSONP的缺点则是:它只支持GET请求而不支持POST等其它类型的HTTP请求:它只支持跨域HTTP请求这种情况,不能解决不同域的两个页面之间如何进行JavaScript调用的问题. $. ...